Process for PECVD of silicon oxide using TEOS decomposition

Coating processes – Direct application of electrical – magnetic – wave – or... – Plasma

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

427294, 427314, H05H 124

Patent

active

RE0366234

ABSTRACT:
A high pressure, high throughput, single wafer, semiconductor processing reactor is disclosed which is capable of thermal CVD, plasma-enhanced CVD, plasma-assisted etchback, plasma self-cleaning, and deposition topography modification by sputtering, either separately or as part of in-situ multiple step processing. The reactor includes cooperating arrays of interdigitated susceptor and wafer support fingers which collectively remove the wafer from a robot transfer blade and position the wafer with variable, controlled, close parallel spacing between the wafer and the chamber gas inlet manifold, then return the wafer to the blade. A combined RF/gas feed-through device protects against process gas leaks and applies RF energy to the gas inlet manifold without internal breakdown or deposition of the gas. The gas inlet manifold is adapted for providing uniform gas flow over the wafer. Temperature-controlled internal and external manifold surfaces suppress condensation, premature reactions and decomposition and deposition on the external surface. The reactor also incorporates a uniform radial pumping gas system which enables uniform reactant gas flow across the wafer and directs purge gas flow downwardly and upwardly toward the periphery of the wafer for sweeping exhaust gases radially away from the wafer to prevent deposition outside the wafer and keep the chamber clean. The reactor provides uniform processing over a wide range of pressures including very high pressures. A low temperature CVD process for forming a highly conformal layer of silicon dioxide is also disclosed. The process uses very high chamber pressure and low temperature, and TEOS and ozone reactants. The low temperature CVD silicon dioxide deposition step is particularly useful for planarizing underlying stepped dielectric layers, either alone or in conjunction with a subsequent isotropic etch. A preferred in-situ multiple-step process for forming a planarized silicon dioxide layer uses (1) high rate silicon dioxide deposition at a low temperature and high pressure followed by (2) the deposition of the conformal silicon dioxide layer also at high pressure and low temperature, followed by (3) a high rate isotropic etch, preferably at low temperature and high pressure in the sane reactor used for the two oxide deposition steps. Various combinations of the steps are disclosed for different applications, as is a preferred reactor self-cleaning step.

REFERENCES:
patent: 3934060 (1976-01-01), Burt et al.
patent: 4717596 (1988-01-01), Barbee et al.
patent: 4872947 (1989-10-01), Wang et al.
patent: 4892753 (1990-01-01), Wang et al.
patent: 5000113 (1991-03-01), Wang et al.
Wang, D.N.K. et al., ULSI Science and Technology, p. 712 (1987) (No Month Avail.).
IBM Technical Disclosure Bulletin, vol. 28, No. 9 (Feb. 1986).
Adams, A.C., Proceedings of the Symposium on Reduced Temperature Processing for VLSI (eds.. Reif and Srinivasas), p. 111 (1986) (No Month Avail.).
Kukushkin, N.V. et al., Sov. Phys. Tech. Phys., vol. 30(10), p. 1227 (1985) (No Month Avail.).
Jiang Ruolian et al., Chinese Journal of Semiconductors, vol. 6, No. 4, p. 429 (1985) (No Month Avail.).
Pande, K.P. and Davies, P.W., J. Electronic Materials, vol. 13, No. 3, p. 593 (1984) (No Month Avail.).
Woodward, J. et al., Thin Solid Films, vol. 85, p. 61 (1981) (No Month Avail.).
Cameron, D.C. et al., M. Schulz and G. Pensl (eds.) Insulating Films on Semiconductors, Springer, Berlin, p. 281 (1981) (No Month Avail.).
Priestly, I.B. and Call, P.J., Thin Solid Films, vol. 69, p. 39 (1980) (No Month Avail.).
Grant, A.J. et al., Inst. Phys. Conf. Ser. No. 50: Chapter 4, p. 266 (1979) (No Month Avail.).
Rand,M.J., J. vac. Sci. Technol., pp. 420-427 (Mar./Apr. 1979).
Kirov, K.I. et al., Phys. Stat. Sol. (a), vol. 48, p. 609 (1978) (No Month Avail.).
Amick, J.A. et al., J. Vac. Sci. Technol., vol. 14, No. 5, p. 1053 (1977) (No Month Avail.).
Mukherjee, S.P. et al., Thin Solid Films, vol. 14, p. 105 (1972) (No Month Avail.).
Feltinsh, I. et al., Izv. Akad. Navk. LatvSSR Ser. fiz. tekh. Navk. No. 2, p. 48 (1970) (No Month Avail.).
Secrist, D.R. et al., Solid-State Electronics, vol. 9, p. 180 (1966) (No Month Avail.).
Secrist, D.R. et al., J. Electrochem. Soc., vol. 113, p. 914 (1966) (No Month Avail.).
Ing, S.W. and Davern, W., J. Electrochem. Soc., vol. 112:3, p. 284 (1965) (No Month Avail.).
Ing, S.W. and Davern, W., J. Electrochem. Soc., vol. 111:1, p. 120 (1964) (No Month Avail.).
Levy, R.A. et al., J. Electrochem. Soc., vol. 134, No. 1, p. 430 (1987) (No Month Avail.).
Tseitlin, G.M. et al., Nuclear Instruments in Methods for Physics Research, vol. 19-20, p. 931 (1987) (No Month Avail.).
Becker, F.S. et al., J. Vac. Sci. Technol. B4(3), p. 732 (May/Jun. 1986).
Becker, F.S. et al., Proceedings of the Symposium on Reduced Temperature Processing for VLSI (eds. Reif and Srinivasas), p. 148 (1986) (No Month Avail.).
Binder, H. et al., Ex. Abs. of the 18th (1986 International) (No Month Avail.).
Conference on Solid State Devices and Materials, p. 299 (1986) (No Month Avail.).
IBM Technical Disclosure Bulletin, vol. 27, No. 12, p. 7252 (May 1985).
Yamada, K. et al., IEDM tech. Dig., p. 702 (1985) (No Month Avail.).
Becker, F.S. et al., ECS Ext. Abstr., vol. 85-2, p. 380 (1985) (No Month Avail.).
Minkina, V.G., USSR J. Appl. Chem., vol. 58, No. 5, p. 1053 (1985) (No Month Avail.).
Smolisky, G. et al., J. Electrochem. Soc., vol. 132, No. 4, p. 950 (Apr. 1985).
Tsunoda, Y., Japanese J. Appl. Phys., vol. 24, No. 3, p. 365 (1985) (No Month Avail.).
Vogel et al., J. Electron. Mat., vol. 14, No. 3, p. 329 (1985) (No Month Avail.).
Mori, S. et al., IEEE CAT. No. 85 CH 2125(3), p. 16 (1985) (No Month Avail.).
Jonsson, U. et al., Thin Solid Films, vol. 124, p. 117 (1985) (No Month Avail.).
Murarka, S.P., J. Appl. Phys., vol. 56, No. 8, p. 2225 (1984) (No Month Avail.).
Vogel, R.H. et al., Technical Report U.S. Army Research Office Contract DAAG29-81-K-0007 (1984) (No Month Avail.).
IBM Technical Disclosure Disclosure Bulletin, vol. 26, No. 4, pp. 1980-1982 (Sep. 1983).
Levin, R.M. and Evans-Lutterodt, K., J. vac. Sci. Technol. B1(1), p. 54 (Jan.-Mar. 1983).
Adams, A.C., VLSI Technology, p. 93 (McGraw-Hill, New York 1983) (No Month Avail.).
Levin, R.M. and Adams, A.C., J. Electrochem. Soc., vol. 129, No. 7, p. 1588 (1982) (No Month Avail.).
Li, P.C. and Tsang, P.J., J. Electrochem. Soc., vol. 129, No. 1, p. 165 (1982) (No Month Avail.).
Song, S.H. et al., J. Electrochem. Soc., vol. 129, No. 4, p. 841 (1982) (No Month Avail.).
Levin, R.M., J. Electrochem. Soc., vol. 129, No. 8, p. 1765 (1982) (No Month Avail.).
Vogel, R.H. et al., ECS Ext. Abstr., vol. 82-2, p. 305 (1982) (No Month Avail.).
Adams, A.C. and Capio, C.D., J. Electrochem. Soc., vol. 126, No. 6, p.1042 (1979) (No Month Avail.).
Balagurov et al., Sov. J. Opt. Technol. 46(2), p. 100 (Feb. 1979).
Huppertz et al., IEEE Transactions on Electron Devices, vol. ED-26, No. 4, p. 658 (1979) (No Month Avail.).
Tsunoda, Y., Japanese J. Appl. Phys., vol. 17, No. 12, p. 2085 (1978) (No Month Avail.).
Maeda, K. and Sato, J., Denki Kagaku, vol. 45, No. 10, p. 654 (1977) (No Month Avail.).
Pliskin, W.A., J. vac. Sci. Technol., vol. 14, No. 5, p. 1064 (Sep./Oct. 1977).
Tsunoda, Y., Japanese J. Appl. Phys., vol. 16, No. 10, p. 1869 (1977) (No Month Avail.).
Gorokhov, E.B. et al., Izvestiya Akademii Nauk SSSR, Neogranicheskie Materialy, vol. 12, No. 2, p. 270 (1976) (No Month Avail.).
Sugawara, K. et al., Chemical Vapor Deposition, ed. Blocher, J.M., No Date Avail.
Hinterman, H.E. and Hall, L.H., Electroch. Soc., Princeton, NJ (1975), No Month Avail.
Hoffmann, G. et al., J. Phys. D. Appl. Phys., vol. 8, p. 1044 (1975), No Month Avail.
Wohlheiter, V.D. et al., ECS Ext. Abstr., vol. 75-1, p. 424 (1975), No Month Avail.
Arai et al., Japan J. Appl. Phys. Suppl. 2, Pt. 1, p. 757 (1974), No Month Avail.
Tsunoda, Y., Japanese J. Appl. Phys., vol. 13, No. 11, p. 1901 (1974), No Month Avail.
Parekh, P.C. et al., Solid-State Electronics, vol. 14, p. 281 (1971), No Month Avail.
Arai, E. et al., Japanese J. Appl. Phys., vol. 9, No. 6, p. 691 (1970), No Month

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for PECVD of silicon oxide using TEOS decomposition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for PECVD of silicon oxide using TEOS decomposition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for PECVD of silicon oxide using TEOS decomposition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-720293

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.