Plasma-enhanced CVD process using TEOS for depositing silicon ox

Coating processes – Direct application of electrical – magnetic – wave – or... – Plasma

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

427237, 427238, 4272553, 427294, 427314, 427574, 427579, B05D 306

Patent

active

053625269

ABSTRACT:
A high pressure, high throughput, single wafer, semiconductor processing reactor is disclosed which is capable of thermal CVD, plasma-enhanced CVD, plasma-assisted etchback, plasma self-cleaning, and deposition topography modification by sputtering, either separately or as part of in-situ multiple step processing. The reactor includes cooperating arrays of interdigitated susceptor and wafer support fingers which collectively remove the wafer from a robot transfer blade and position the wafer with variable, controlled, close parallel spacing between the wafer and the chamber gas inlet manifold, then return the wafer to the blade. A combined RF/gas feed-through device protects against process gas leaks and applies RF energy to the gas inlet manifold without internal breakdown or deposition of the gas. The gas inlet manifold is adapted for providing uniform gas flow over the wafer. Temperature-controlled internal and external manifold surfaces suppress condensation, premature reactions and decomposition and deposition on the external surfaces. The reactor also incorporates a uniform radial pumping gas system which enables uniform reactant gas flow across the wafer and directs purge gas flow downwardly and upwardly toward the periphery of the wafer for sweeping exhaust gases radially away from the wafer to prevent deposition outside the wafer and keep the chamber clean. The reactor provides uniform processing over a wide range of pressures including very high pressures. A low temperature CVD process for forming a highly conformal layer of silicon dioxide is also disclosed. The process uses very high chamber pressure and low temperature, and TEOS and ozone reactants. The low temperature CVD silicon dioxide deposition step is particularly useful for planarizing underlying stepped dielectric layers, either alone or in conjunction with a subsequent isotropic etch. A preferred in-situ multiple-step process for forming a planarized silicon dioxide layer uses (1) high rate silicon dioxide deposition at a low temperature and high pressure followed by (2) the deposition of the conformal silicon dioxide layer also at high pressure and low temperature, followed by (3) a high rate isotropic etch, preferably at low temperature and high pressure in the same reactor used for the two oxide deposition steps. Various combinations of the steps are disclosed for different applications, as is a preferred reactor self-cleaning step.

REFERENCES:
patent: 3200019 (1965-08-01), Scott et al.
patent: 3330694 (1967-07-01), Black et al.
patent: 3627590 (1971-12-01), Mammel
patent: 3661637 (1972-05-01), Sirtl
patent: 3854443 (1974-12-01), Baerg
patent: 3934060 (1976-01-01), Burt et al.
patent: 4282268 (1981-08-01), Priestley et al.
patent: 4313783 (1982-02-01), Davies et al.
patent: 4496609 (1985-01-01), McNeilly
patent: 4503807 (1985-03-01), Nakayama et al.
patent: 4535228 (1985-08-01), Mimura et al.
patent: 4550684 (1985-11-01), Mahawili
patent: 4563240 (1986-01-01), Shibata et al.
patent: 4576698 (1986-03-01), Gallagher et al.
patent: 4625678 (1986-12-01), Shioya et al.
patent: 4640221 (1987-02-01), Barbee et al.
patent: 4640224 (1987-02-01), Bunch et al.
patent: 4647266 (1987-03-01), Turner et al.
patent: 4680061 (1987-07-01), Lamont
patent: 4687682 (1987-08-01), Koze
patent: 4693211 (1987-09-01), Ogami
patent: 4695700 (1987-09-01), Provence et al.
patent: 4702936 (1987-10-01), Maeda et al.
patent: 4717596 (1988-01-01), Barbee et al.
patent: 4731255 (1988-03-01), Maeda et al.
patent: 4745088 (1988-05-01), Inoue et al.
patent: 4747368 (1988-05-01), Brien
patent: 4768464 (1988-09-01), Hayashi et al.
patent: 4791398 (1988-12-01), Sittler et al.
patent: 4845054 (1989-07-01), Mitchener
patent: 5028566 (1991-07-01), Lagendijk
Wang, D. N. K. et al., ULSI Science and Technology, p. 712 (1987).
IBM Technical Disclosure Bulletin, vol. 28, No. 9 (Feb. 1986).
Adams, A. C., Proceedings of the Symposium on Reduced Temperature Processing for VLSI (eds. Reif and Srinivasas), p. 111 (1986).
Kukushkin, N. V. et al., Sov. Phys. Tech. Phys., vol. 30(10), p. 1227 (1985).
Jiang Ruolian et al., Chinese Journal of Semiconductors, vol. 6, No. 4, p. 429 (1985).
Pande, K. P. and Davies, P. W., J. Electronic Materials, vol. 13, No. 3, p. 593 (1984).
Mackens, U. et al., Thin Solid Films, vol. 97, p. 53 (1982).
Woodward, J. et al., Thin Solid Films, vol. 85, p. 61 (1981).
Cameron, D. C. et al., M. Schulz and G. Pensl (eds.) Insulating Films on Semiconductors, Springer, Berlin, p. 281 (1981).
Priestley, I. B. and Call, P. J., Thin Solid Films, vol. 69, p. 39 (1980).
Grant, A. J. et al., Inst. Phys. Conf. Ser. No. 50: Chapter 4, p. 266 (1979).
Rand, M. J., J. Vac. Sci. Technol., pp. 420-427 (Mar./Apr. 1979).
Kirov, K. I. et al., Phys. Stat. Sol. (a), vol. 48, p. 609 (1978).
Amick, J. A. et al., J. Vac. Sci. Technol., vol. 14, No. 5, p. 1053 (1977).
Kotera, N., Phys. Rev. B., vol. 5, No. 8, p. 3065 (1972).
Mukherjee, S. P. et al., Thin Solid Films, vol. 14, p. 105 (1972).
Feltinsh, I. et al., Izv. Akad. Navk. LatvSSR Ser. fiz. tekh. Navk. No. 2, p. 48 (1970).
Secrist, D. R. et al., Solid-State Electronics, vol. 9, p. 180 (1966).
Secrist, D. R. et al., J. Electrochem. Soc., vol. 113, p. 914 (1966).
Ing, S. W. and Davern, W., J. Electrochem. Soc., vol. 112:3, p 284 (1965).
Ing, S. W. and Davern, W., J. Electrochem. Soc., vol. 111:1, p. 120 (1964).
Levy, R. A. et al., J. Electrochem. Soc., vol. 134, No. 1, p. 430 (1987).
Tseitlin, G. M. et al., Nuclear Instruments in Methods for Physics Research, vol. 19-20, p. 931 (1987).
Becker, F. S. et al., Proceedings of the Symposium on Reduced Temperature Processing for VLSI (eds. Reif and Srinivasas), p. 148 (1986 ).
Becker, F. S. et al., J. Vac. Sci. Technol. B4(3), p. 732 (May/Jun. 1986).
Binder, H. et al., Ex. Abs. of the 18th (1986 International) Conference on Solid State Devices and Materials, p. 299 (1986).
IBM Technical Disclosure Bulletin, vol. 27, No. 12, p. 7252 (May 1985).
Yamada, K. et al., IEDM Tech. Dig., p. 702 (1985).
Becker, F. S. et al., ECS Ext. Abstr., vol. 85-2, p. 380 (1985).
Minkina, V. G., USSR J. Appl. Chem., vol. 58, No. 5, p. 1053 (1985).
Smolinsky, G. et al., J. Electrochem. Soc., vol. 132, No. 4, p. 950 (Apr. 1985).
Tsunoda, Y., Japanese J. Appl. Phys., vol. 24, No. 3, p. 365 (1985).
Vogel et al., J. Electron. Mat., vol. 14, No. 3, p. 329 (1985).
Mori, S. et al., IEEE Cat. No. 85 CH 2125(3), p. 16 (1985).
Jonsson, U. et al., Thin Solid Films, vol. 124, p. 117 (1985).
Murarka, S. P., J. Appl. Phys., vol. 56, No. 8, p. 2225 (1984).
Vogel, R. H. et al., Technical Report U.S. Army Research Office Contract DAAG29-14 81-K-0007 (1984).
IBM Technical Disclosure Bulletin, vol. 26, No. 4, pp. 1980-1982 (Sep. 1983).
Levin, R. M. and Evans-Lutterodt, K., J. Vac. Sci. Technol. B1(1), p. 54 (Jan.-Mar. 1983).
Adams, A. C., VLSI Technology, p. 93 (McGraw-Hill, New York (1983).
Levin, R. M. and Adams, A. C., J. Electrochem. Soc., vol. 129, No. 7, p. 1588 (1982).
Li, P. C. and Tsang, P. J., J. Electrochem. Soc., vol. 129, No. 1, p. 165 (1982).
Song, S. H. et al., J. Electrochem. Soc., vol. 129, No. 4, p. 841. (1982).
Levin R. M., J. Electrochem. Soc., vol. 129, No. 8, p. 1765 (1982).
Vogel, R. H. et al., ECS Ext. Abstr., vol. 82-2, p. 305 (1982).
Adams, A. C. and Capio, C. D., J. Electrochem. Soc., vol. 126, No. 6, p. 1042 (1979).
Balagurov et al., Sov. J. Opt. Technol. 46(2), p. 100 (Feb. 1979)
Huppertz et al., IEEE Transactions on Electron Devices, vol. ED-26, No. 4, p. 658 (1979).
Tsunoda, Y., Japanese J. Appl. Phys., vol. 17, No. 12, p. 2085 (1978).
Maeda, K. and Sato, J., Denki Kagaku, vol. 45, No. 10, p. 654 (1977).
Pliskin, W. A., J. Vac. Sci. Technol., vol. 14, No. 5, p. 1064 (Sep./Oct. 1977).
Tsunoda, Y., Japanese J. Appl. Physl, vol. 16, No. 10, p. 1869 (1977).
Gorokhov, E. B. et al., Izvestiya Akademii Nauk SSSR, Neogranicheskie Materialy, vol. 12, No. 2, p. 270 (1976).
Sugawara, K. et al., Chemical Vapor Deposition, ed. Blocher, J. M., Hinterman, H. E. and Hall, L. H., Electroch. Soc., Princeton, N.J.
Hoffmann, G. et al., J. Phys. D. Appl. Phys., vol. 8, p. 1044 (1975).
Wohlhei

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plasma-enhanced CVD process using TEOS for depositing silicon ox does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plasma-enhanced CVD process using TEOS for depositing silicon ox, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plasma-enhanced CVD process using TEOS for depositing silicon ox will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1780785

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.