Method of etching organic antireflection coating (ARC) layers

Etching a substrate: processes – Masking of a substrate using material resistant to an etchant – Mask is multilayer resist

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C216S049000, C216S067000, C216S072000, C438S695000, C438S696000, C438S710000, C438S714000, C438S725000, C252S079100

Reexamination Certificate

active

06599437

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains to a method of etching organic antireflection coatings (ARCs), and in particular, bottom antireflection coatings (BARCs). Organic antireflection coatings, as indicated by their name, include carbon and hydrogen-containing materials, and are typically polymeric in nature. The antireflection coatings are part of an etch stack which is used to produce semiconductor devices, and they are pattern etched to submicron dimensions. The present method permits control over shifts in the critical dimension of the etched feature size, while providing uniform etching of ARCs across the entire surface of a semiconductor substrate, despite variation in spacing between features across the substrate surface.
2. Brief Description of the Background Art
In the field of semiconductor device fabrication, it is well recognized that as device feature sizes decrease to about 0.18 &mgr;m and smaller, mask patterning via photoresist materials requires the use of deep ultra violet wavelength (DUV) imaging radiation. Antireflective coatings are used in combination with DUV photoresists, among other photoresists, to reduce standing waves and back-scattered light, so that the dimensions of the patterning in the photoresist can be better controlled.
Generally, the photoresist is applied over a stack of other layers which are patterned as a part of the semiconductor device fabrication process. Some of the layers in the stack are consumed during the process of patterning underlying layers which become part of the functioning device. An ARC layer may be present at a number of different locations within a stack of layers, depending on the application. When the ARC layer is applied over the top of a layer stack, it is referred to as a top antireflective coating (TAR). When the ARC layer lies beneath the photoresist layer, it is commonly referred to as a bottom antireflective coating (BARC). TAR coatings are frequently removed during the photoresist patterning (developing) process, while BARC layers most often require a dry etching removal step.
Processes for the dry etching of organic ARCs usually are accomplished in a plasma etch system. ARC etching plasma source gases vary considerably in composition. Some examples of plasma source gas combinations include CHF
3
/CF
4
/Ar—O
2
; CF
4
/He—O
2
; O
2
/N
2
; HBr/O
2
; and HBr/CO
2
/O
2
—Ar.
In one process for etching organic antireflective coatings overlying a silicon-containing substrate, the substrate is placed into a process chamber and treated with a plasma. The plasma is generated from a process gas comprising oxygen and a compound selected from a group of compounds consisting of hydrogen and bromine-containing compounds, hydrogen and iodine-containing compounds, and mixtures thereof. Processing variables are adjusted to provide anisotropic etching of the organic antireflective coating.
In another etching process, an anti-reflection coating overlying a semiconductor substrate is etched by employing a plasma formed from a mixture of oxygen, nitrogen, and at least one inert gas. In an alternative method, the antireflective coating layer may be etched by employing a nitrogen plasma, which includes an inert gas, without any oxygen in the plasma, although the etch rate is said to be reduced.
Another method for plasma etching a BARC layer overlying a semiconductor substrate utilizes etch chemistry provided by a plasma processing gas which includes hydrogen bromide (HBr), CO
2
, and O
2
, with argon or another inert gas.
More information regarding the kinds of processes described above may be found in European Patent Publication No. EP 0820093, of Zhao et al., published Jan. 21, 1998; U.S. Pat. No. 5,910,453, to Gupta et al., issued Jun. 8, 1999; and European Patent Application No. EP 0859400, of Yang et al., published Aug. 19, 1998.
Uniformity of etching across a wafer has long been a concern, and, in general, the references pertaining to etching of organic antireflective coating layers place great emphasis on maintenance of the critical dimension of the feature being etched, such as a line width, contact pad dimension, gate size, and so on. Emphasis is also placed on the selectivity of the etch process, where the etch rate of an ARC layer is compared with the etch rate of an adjacent layer of material, such as a silicon-containing layer underlying the ARC layer, for example.
A very important variable, which has become more important with decreasing critical dimension size of etched features, is the etched feature critical dimension uniformity control across a substrate, such as a semiconductor wafer. For example, when the pattern being etched into an ARC layer is a series of lines and spaces, and the spacing between the lines is different at different positions on the substrate surface, the etch rate of the ARC may vary at different positions on the substrate surface. This may affect the depth of etch and may affect the profile of the feature being etched. It also affects the critical dimension uniformity across the substrate. The phenomenon of a change in overall etch performance across a substrate surface as a function of the spacing between etched features is sometimes referred to as a “microloading” effect. Differences in etch rate and/or etched feature profile occur in part because the availability of etchant species at a given position on the substrate surface varies, and the amount of etch byproduct which is produced varies as well. One of the reasons that the availability of etchant species and byproduct residue varies across a wafer surface is that the input and distribution of processing gases and the removal of processing gases and etch byproducts from the processing chamber is frequently not uniform. Another reason is that there is different spacing between pattern features at different locations (positions) on the substrate surface. Etch byproducts tend to be generated by two different mechanisms: 1) the use of etchant gas compositions which contain significant amounts of passivating gases (e.g., N
2
, or polymer-generating gases, such as carbon-containing gases), and/or 2) back-sputtering of etched material onto feature sidewalls during etching. Etchant gas-generated passivation layers (1) tend to build up on feature sidewalls relatively evenly over the substrate surface. Back-sputtered passivation layers (2) tend to deposit more on isolated feature areas of the substrate, where there is more back-sputtering because the amount of material being etched tends to be greater than in dense feature areas of the substrate.
Commonly owned, copending U.S. application Ser. No. 09/611,085, of Shen et al., discloses a process for plasma etching of ARC layers which is said to provide critical dimension uniformity across a substrate surface. The ARC etching process utilizes CF
4
, HBr, and O
2
chemistry. However, while this process provides excellent critical dimension uniformity across a substrate surface during etching of 1500 Å thick BARC layers, critical dimension uniformity is not as good when the process is used to etch thicker (e.g., 2000 Å) BARC layers. This is believed to be due to the longer etch time needed to etch a thicker BARC layer. Therefore, it would be desirable to provide a process for etching a BARC layer that would provide excellent critical dimension uniformity across a substrate surface, when etching thicker (>1500 Å thickness) BARC layers.
SUMMARY OF THE INVENTION
The present invention includes a method of etching organic coating layers, and in particular, antireflective coating layers. The method provides improved critical dimension uniformity of the etched feature across the substrate surface, while providing selectivity favoring etching of the antireflective coating layer relative to an underlying silicon-containing layer. The present method has been shown to provide excellent critical dimension uniformity during etching of thicker (>1500 Å) organic coating layers.
We have discovered a method for etching an organic coating la

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of etching organic antireflection coating (ARC) layers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of etching organic antireflection coating (ARC) layers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of etching organic antireflection coating (ARC) layers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3023254

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.