Method for fabricating a MOSFET device structure which...

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S305000, C438S151000

Reexamination Certificate

active

06204138

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to the design of field effect transistors (FETS) and, more particularly, to a metal oxide silicon (MOS) transistor structure which facilitates mitigation of junction capacitance and/or floating body effects.
BACKGROUND OF THE INVENTION
As is known in the art, transistors such as metal oxide silicon (MOS) transistors, have been formed in isolated regions of a semiconductor body such as an epitaxial layer which was itself formed on a semiconductor, typically bulk silicon, substrate. With an n-channel MOS field effect transistor (FET), the body is of p-type conductivity and the source and drain regions are formed in the p-type conductivity body as N
+
type conductivity regions. With a p-channel MOSFET, the body, or epitaxial layer, is of n-type conductivity and the source and drain regions are formed in the n-type conductivity body as P
+
type conductivity regions. It has been suggested that the semiconductor body, or layer, be formed on an insulating substrate, or over an insulation layer formed in a semiconductor substrate. Such technology sometimes is referred to as Silicon-on-Insulator (SOI) technology. Silicon-on-Insulator MOS technologies have a number of advantages over bulk silicon MOS transistors. These advantages include: reduced source/drain capacitance and hence improved speed performance at higher-operating frequencies; reduced N
+
to P
+
spacing and hence higher packing density due to ease of isolation; and higher “soft error” upset immunity (i.e., the immunity to the effects of alpha particle strikes).
Silicon-on-Insulator technology is characterized by the formation of a thin silicon layer for formation of the active devices over an insulating layer, such as an oxide, which is in turn formed over a substrate. Transistor sources in drains are formed by, for example, implantations into the silicon layer while transistor gates are formed by forming a patterned oxide and conductor (e.g. metal) layer structure. Such structures provide a significant gain in performance by having lower parasitic capacitance (due to the insulator layer) and increased drain current due to floating body charging effects (since no connection is made to the channel region and charging of the floating body provides access towards a majority of carriers which dynamically lower the threshold voltage, resulting in increased drain current). However, the floating body can introduce dynamic instabilities in the operation of such a transistor.
An SOI field effect transistor combines two separated immunity groups, generally formed by implantation, constituting the source and drain of the transistor with the general region (device body) between them covered by a thin gate insulator and a conductive gate. Typically no electrical connection is made to the channel region and therefore the body is electrically floating. Because the source and drain regions normally extend entirely through the thin silicon layer, the electrical potential of the body is governed by Kirchoff's current law, wherein the sum of the currents flowing into the body equals the sum of the currents flowing out of the body. Because the channel potential is dependent on the body voltage, the device threshold voltage varies as a function of the body voltage.
The boundaries between the channel region and the source and drain, respectively, form junctions which are normally reversed biased. Conduction in the channel region normally occurs immediately below the gate insulator in the region in which depletion can be controlled by a gate voltage. However, the junctions at the boundary of the source and drain also form a parasitic lateral bipolar transistor, which, in effect exists somewhat below the field effect transistor and may supplement desired channel current. On the other hand, the parasitic bipolar device cannot be controlled and under some bias conditions, the operation of the parasitic bipolar device may transiently dominate the operation of the field effect transistor and effectively occupy substantially the entire silicon layer at times when the channel current is not desired.
When the device is switching, the body is coupled to various terminals of the device because there are capacitances between the body and gate, body and source, and body and drain respectively. When the voltage at the various terminal changes, the body voltage changes as a function of time which in turn effects the device threshold voltage. In certain cases, this relationship may be harmful to a device (e.g., inverter). For example, when the gate of an inverter is switched on the drain is discharged (which is typically the output of the inverter)—thus the drain voltage falls when the gate is switched ON. Because the drain and body are capacitively coupled, when the drain voltage drops so does the body voltage. There is an inverse relationship between the body voltage and the threshold voltage. For an NMOS device, when the body voltage falls, the device threshold voltage increases. When the body voltage increases the threshold voltage decreases. Thus, the capacitive coupling between the drain and the body results in the device losing drive current as the device is being switched.
In SOI transistors there is a lack of a bulk silicon or body contact to the MOS transistor. In some devices, it is desirable to connect the p-type conductivity body in the case of an n-channel MOSFET, or the n-type conductivity body in the case of a p-channel MOSFET, to a fixed potential. This prevents various hysteresis effects associated with having the body potential “float” relative to ground. With bulk silicon MOSFETs such is relatively easy because the bottom of the bulk silicon can be easily electrically connected to a fixed potential.
SOI devices also exhibit a kink effect which originates from impact ionization. When an SOI MOSFET is operated at a relatively large drain-to-source voltage, channel electrons with sufficient energy cause impact ionization near the drain end of the channel. The generated holes build up in the body of the device, thereby raising the body potential. The increased body potential reduces the threshold voltage of the MOSFET. This increases the MOSFET current and causes the so-called “kink” in SOI MOSFET current vs. voltage (I-V) curves.
With regard to the lateral bipolar action, if the impact ionization results in a large number of holes, the body bias may be raised sufficiently so that the source region to body p-n junction is forward biased. The resulting emission of minority carriers into the body causes a parasitic npn bipolar transistor between source, body and drain to turn on, leading to loss of gate control over the MOSFET current.
In view of the above, it is apparent that there is a need in the art for a device which mitigates some of the negative effects mentioned above, relating to junction capacitance and floating body effects.
SUMMARY OF THE INVENTION
The present invention provides for a novel MOSFET device and method for making the same. The device of the present invention mitigates some of the aforementioned problems associated with MOSFET devices. The device of the present invention includes typical first lightly doped source and drain regions (LDD regions). The device also includes second very lightly doped regions below the LDD regions. The second very lightly doped regions facilitate mitigating capacitive coupling between the drain and body which results in improved AC/dynamic performance (e.g., speed) of the device as compared to devices having higher junction capacitances. More particularly, the device structure mitigates dropping of body potential during device switching by lowering the capacitive coupling between the drain and the body. As mentioned above, the body potential and threshold potential are inversely related and by reducing capacitive coupling between the drain and body dropping of body voltage during switching is mitigated. This in turn mitigates variances in the threshold voltage.
The second very lightly doped regions also

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for fabricating a MOSFET device structure which... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for fabricating a MOSFET device structure which..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating a MOSFET device structure which... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2460737

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.