Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
1998-05-05
2001-04-03
Thompson, Gregory (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C165S080200, C165S080300, C174S016300, C257S719000, C361S710000
Reexamination Certificate
active
06212070
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to heat sink assemblies and, more particularly, to a technique and assembly arrangement wherein a heat sink is positioned in thermal contact with a substrate such as an integrated circuit chip or electronic package but does not impart any stressful forces on the substrate, thereby avoiding damage to interconnect both at the heat sink substrate interface and at the substrate underlying support interface.
2. Background Description
Modern integrated circuit chips, chip carriers, and other electronic substrates and the use of higher powers in these devices mandate a need for better heat dissipation schemes. Current industry solutions have included the use of active heat sinks or elaborate structures to improve the thermal load carrying capacity of select components; however, these approaches tend to add undesirable cost and complexity, and also reduce reliability of the final system design.
A simple solution appears to be the use of larger and heavier heat sinks since limitations in heat sink mass limit the range of allowable electronic package power dissipation. However, larger and heavier heat sinks have not proven effective, particularly when they are applied to surface mounted components. There are serious constraints linked to the amount of heat sink mass which can actually be supported without adversely affecting the reliability of the interconnections to surface mounted components. Large mass heat sinks cause excessive stresses to both first and second level interconnections (i.e., component to heat sink being the site of first level interconnections, and component to circuit card being the site of second level interconnections) during shipping and/or over the machine life time, resulting a degradation to interconnection geometry and subsequently package interconnection reliability.
In certain circumstances substituting pin through hole connections for surface mount structures is not a viable option. Therefore, it would be advantageous to provide an effective mechanism and methodology which allows using high mass heat sinks with surface mounted electronic packages and components.
U.S. Pat. No. 5,386,338 to Jordan et al. and U.S. Pat. No. 5,464,054 to Hinshaw et al. each show a spring clamp mechanism for securing a heat sink to a mounting frame. In operation, an electronic device package is positioned within an aperture of a mounting frame, and the heat sink is secured to the mounting frame using a spring clip which fits across the heat sink and has projecting ends which are flexed to a point underneath tab members on the mounting frame. The patents also discuss the possibility of eliminating the mounting frame and securing the projecting ends in specially designed recesses positioned outside a socket connection in a circuit board which receives the electronic package. The configurations described in Jordan and Hinshaw each require a constant spring force to be applied against the surface of the electronic package, and would be wholly inappropriate for electronic packages that use surface mount interconnections.
U.S. Pat. No. 4,885,126 to Polonio shows, in
FIGS. 31 and 41
, a packaging system wherein integrated circuit chips are housed in recessed regions in a housing that is connected to a printed circuit board using pin connections . A convection heat sink is bonded to the top of the housing forming a hermetic seal for the chips in the housing. However, like Jordan and Hinshaw, Polonio relies on a compressive spring force to maintain thermal contact between the chips in the housing and the heat sink. In Polonio, the spring members are positioned between the top of the integrated circuit chips and the bottom of the heat sink, and are compressed at the time of creating the hermetic seal. In addition, Polonio is not related to and does not address problems that arise with surface mount components.
U.S. Pat. No. 4,455,457, to Kurokawa discloses several different packaging arrangements for semiconductors that are designed to increase thermal dissipation. In each configuration, a chip is positioned within a recess in a housing that is equipped with pin connectors for connection to a circuit board, and a heat diffusing plate contacts the top of the chip and serves to transfer heat from the chip to a heat sink positioned on top of the housing. Kurokawa relies on an elastic bias from a metallic member positioned between the diffusing plate and the heat sink to maintain contact between the diffusing plate and the chip. The heat sink is attached directly to the heat sink. The Kurokawa reference does not discuss arrangements which would be suitable for surface mount technologies.
U.S. Pat. No. 5,311,402 to Kobayashi describes an integrated circuit device fitted inside a chip holder where the integrated circuit device is adhesively bonded to a cap, and where the cap fits within grooves on an underlying substrate. The Kobayashi patent is mainly directed to positioning a chip on a circuit board, and is not concerned with heat sinks or the adverse impact of a heavy element on interconnections when the heavy element is connected to a device or substrate.
SUMMARY OF THE INVENTION
It is an object of this invention to provide an electronic packaging arrangement and method which allows a heat sink to be in thermal communication with a substrate such as an integrated circuit chip or chip package without imparting stress to the substrate or its interconnections.
It is another object of this invention to provide a heat sink packaging arrangement and method which is adaptable to a wide range of substrates and which is not subject to exacting manufacturing or assembly tolerances.
It is still another object of this invention to provide a heat sink packaging arrangement which allows large heat sinks to be used in conjunction with surface mounted substrates and components that avoids stresses to both first and second level interconnect.
It is another object of this invention to provide a heat sink packaging arrangement that is closely matched to the thermal expansion characteristics of the substrate being cooled and the support on which the substrate is surface mounted.
According to the invention, a high mass heat sink is positioned and restrained in a manner wherein the mass of the heat sink is mechanically decoupled from the substrate (e.g., chip, electronic package, etc.), while at the same time the heat sink is held tightly and positioned in intimate contact with the substrate to allow for heat dissipation. A frame is mounted to a support on which the substrate is mounted, such as a printed circuit board, circuit card, or other device, and is positioned above the substrate. Preferably, the frame is made in a manner which provides sufficient clearance in the X, Y, and Z dimensions to accommodate neighboring components to the substrate which are attached to the support. The frame has an aperture in its top which is aligned with the substrate to be cooled.
A heat sink, which preferably has a large fan-like convection portion and a narrower slug region for dispersing the thermal energy, is connected to the frame by adhesive bonding or other means, including mechanical connections, with its narrower region extending coaxially through the aperture in contact with the substrate. Preferably, the fan-like convection region is spaced away from the top of the frame and the connection to the frame is made only in the aperture region, thereby limiting the transfer of heat to the frame. This allows the frame to have thermal expansion characteristics closely matched to the substrate being cooled and the underlying support. In a specific embodiment, the frame is comprised of two parts referred to as a plate which includes the aperture and vertical members called studs which are used to space the plate above the substrate, and the plate is made of a material selected to match the thermal expansion characteristics of the support such that it expands and contracts in the X-Y dimensions the same as the support, and the stu
Atwood Eugene R.
Benenati Joseph A.
Dankelman James J.
Kastberg Eric J.
Puttlitz Karl J.
Blecker, Esq. Ira D.
International Business Machines - Corporation
McGuireWoods LLP
Thompson Gregory
LandOfFree
Zero force heat sink does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Zero force heat sink, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Zero force heat sink will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2518070