Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate
Patent
1998-09-01
2000-12-26
Niebling, John F.
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having insulated gate
438309, 438348, 438351, H01L 218249
Patent
active
061658286
ABSTRACT:
An improved structure and method for gated lateral bipolar transistors is provided. The present invention capitalizes on opposing sidewall structures and adjacent conductive sidewall members to conserve available surface space on the semiconductor chips. The conserved surface space allows a higher density of structures per chip. The conductive sidewall members couple to the gate of the gated lateral bipolar transistor and, additionally, to a retrograded, more highly doped bottom layer. The improved structure provides for both metal-oxide semiconductor (MOS) type conduction and bipolar junction transistor (BJT) type conduction beneath the gate of the gated lateral bipolar transistor.
REFERENCES:
patent: 4450048 (1984-05-01), Gaulier
patent: 4673962 (1987-06-01), Chatterjee et al.
patent: 4922315 (1990-05-01), Vu
patent: 4987089 (1991-01-01), Roberts
patent: 4996574 (1991-02-01), Shirasaki
patent: 5006909 (1991-04-01), Kosa
patent: 5023688 (1991-06-01), Ando et al.
patent: 5097381 (1992-03-01), Vo et al.
patent: 5122848 (1992-06-01), Lee et al.
patent: 5250450 (1993-10-01), Lee et al.
patent: 5315143 (1994-05-01), Tsuji
patent: 5350934 (1994-09-01), Matsuda
patent: 5379255 (1995-01-01), Shah
patent: 5453636 (1995-09-01), Eitan et al.
patent: 5491356 (1996-02-01), Dennison et al.
patent: 5508544 (1996-04-01), Shah
patent: 5528062 (1996-06-01), Hsieh et al.
patent: 5541432 (1996-07-01), Tsuji
patent: 5554870 (1996-09-01), Fitch et al.
patent: 5581104 (1996-12-01), Lowrey et al.
patent: 5585998 (1996-12-01), Kotecki et al.
patent: 5587665 (1996-12-01), Jiang
patent: 5646900 (1997-07-01), Tsukude et al.
patent: 5680345 (1997-10-01), Hsu et al.
patent: 5689121 (1997-11-01), Kitagawa et al.
patent: 5691230 (1997-11-01), Forbes
patent: 5796143 (1998-08-01), Fulford, Jr. et al.
patent: 5796166 (1998-08-01), Agnello et al.
patent: 5892260 (1999-04-01), Okumura et al.
patent: 5907170 (1999-05-01), Forbes et al.
patent: 5909618 (1999-06-01), Forbes et al.
patent: 5914511 (1999-06-01), Noble et al.
patent: 5936274 (1999-08-01), Forbes et al.
patent: 5973356 (1999-10-01), Noble et al.
Yilmaz et al.; "Recent Advances in Insulated Gate Bipolar Transistor Technology", IEEE Transactions on Industry Applications, vol. 26, No. 5 Sep./Oct. 1990, pp. 831-834.
Wolf, S.; Silicon Processing for the VLSI Era vol. 2: Process Integration, Sunset Beach, CA, 1990, pp. 389-392. No Month.
Horiguchi, et al., "Switched-Source-Impedance CMOS Circuit for Low Standby Subthreshold Current Giga-Scale LSIs", IEEE Journal of Solid State Circuits, vol. 28, 1131-1135, (1993) No Month.
Huang, W.L., et al., "TFSOI Complementary BiCMOS Technology for Low Power Applications", IEEE Transactions on Electron Devices, 42, 506-512, (Mar. 1995).
Jaeger, et al., "A High-speed Sensing Scheme for 1T Dynamic RAMS Utilizing the Clamped Bit-line Sense Amplifier", IEEE Journal of Solid State Circuits, vol. 27, 618-25, (1992) No Month.
Ko, et al., "High-gain Lateral Bipolar Action ina MOSFET Structure", IEEE Trans. on Electron Devices, vol. 38, No. 11, 2487-96, (Nov. 1991).
MacSweeney, D., et al., "Modelling of Lateral Bipolar Devices in a CMOS Process", IEEE Bipolar Circuits and Technology Meeting, Minneapolis, MN, 27-30, (Sep. 1996).
Parke, S.A., et al., "A High-Performance Lateral Bipolar Transistor Fabricated on SIMOX", IEEE Electron Device Letters, 14, 33-35, (Jan. 1993).
Rabaey, Digital Integrated Circuits, Prentice Hall, Englewood Cliffs, NJ, 222-232, (1996) No Month.
Saito, M., et al., "Techniques for Controlling Effective Vth in Multi-Gbit DRAM Sense Amplifier", 1996 Symposium on VLSI Circuits, Digest of Technical Papers, Honolulu, HI, 106-107, (Jun. 13-15, 1996).
Seevinck, E., et al., "Current-Mode Techniques for High-Speed VLSI Circuits with Application to Current Sense Amplifier for CMOS SRAM's", IEEE Journal of Solid-State Circuits, 26, 525-536, (Apr. 1991).
Shimomura, K., et al., "A 1V 46ns 16Mb SOI-DRAM with Body Control Technique", 1997 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 68-69, (Feb. 6, 1997).
Tsui, P.G., et al., "A Versatile Half-Micron Complementary BiCMOS Technology for Microprocessor-Based Smart Power Applications", IEEE Transactions on Electron Devices, 42, 564-570, (Mar. 1995).
Tuinega, A Guide to Circuit Simulation and Analysis Using PSPICE, Prentice Hall, Englewood Cliffs, NJ, (1988) No Month.
Wong, et al., "A 1V CMOS Digital Circuits with Double-Gate Driven MOSFET", IEEE Int. Solid State Circuits Conference, San Francisco, 292-93, (1997) No Month.
Chen, M.J., et al., "Back-Gate Forward Bias Method for Low-Voltage CMOS Digital Cicuits", IEEE Transactions on Electron Devices, 43, 904-909, (Jun. 1986).
Chen, M.J., et al., "Optimizing the Match in Weakly Inverted MOSFET's by Gated Lateral Bipolar Action", IEEE Transactions on Electron Devices, 43, 766-773, (May 1996).
Chung, I.Y., et al., "A New SOI Inverter for Low Power Applications", Proceedings of the 1996 IEEE International SOI Conference, Sanibel Island, FL, 20-21, (Sep. 30-Oct. 3, 1996).
Denton, J.P., et al., "Fully Depleted Dual-Gated Thin-Film SOI P-MOSFET's Fabricated in SOI Islands with an Isolated Buried Polysilicon Backgate", IEEE Electron Device Letters, 17, 509-511, (Nov. 1996).
Fuse, T., et al., "A 0.5V 200MHz 1-Stage 32b ALU Using a Body Bias Controlled SOI Pass-Gate Logic", 1997 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 286-287, (1997) No Month.
Holman, W.T., et al., "A Compact Low Noise Operational Amplifier for a 1.2 Micrometer Digital CMOS Technology", IEEE Journal of Solid-State Circuits, 30, 710-714, (Jun. 1995).
Forbes Leonard
Noble Wendell P.
Lattin Christopher
Micro)n Technology, Inc.
Niebling John F.
LandOfFree
Structure and method for gated lateral bipolar transistors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Structure and method for gated lateral bipolar transistors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structure and method for gated lateral bipolar transistors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-993908