Process for forming cone shaped solder for chip interconnection

Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S108000, C438S128000, C438S611000, C438S612000, C438S613000, C257S772000, C257S738000, C257S778000, C257S780000

Reexamination Certificate

active

06184062

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the manufacture of electronic modules, namely flip chip packaging, utilizing an improved method of assembling the module. The improved method allows for enhanced contact with less stressing on the solder joints used to electrically interconnect a chip and a substrate resulting in an electronic module having higher integrity and reliability.
2. Description of Related Art
Multi-layer ceramic electronic components are typically joined together by soldering pads on a surface of one of the electronic components to corresponding pads on the surface of the other component. Controlled Collapse Chip Connection is an interconnect technology developed by IBM as an alternative to wire bonding. This technology is generally known as C
4
technology or flip chip packaging. Broadly stated, one or more integrated circuit chips are mounted above a single or multi-layer ceramic substrate and pads on the chip are electrically and mechanically connected to corresponding pads on the substrate by a plurality of electrical connections such as solder bumps. The integrated circuit chips may be assembled in an array such as a 10×10 array on the multi-layer ceramic surface.
One of the key features in using flip chip packaging is the ability to accommodate a considerable distortion in pattern between the chip and the substrate. This accommodation is due to a self-alignment capability produced by surface tension minimization of the solder joints. What cannot be tolerated, however, is any significant deviation from planarity between the chip surface and the substrate surface since electrical interconnection cannot occur unless the solder bump on the chip physically contacts the substrate.
Multi-layer ceramic (MLC) chip carriers with flip chip technology often possess, due to design, the tendency to have localized bulges at the location of underlying substrate vias. In addition, residual camber (non-planarity) from sintering the substrate can lead to further non-planarity across the chip site. A camber magnitude much greater than about 25 to 30 microns will lead to non-contact opens after a chip join attempt. Thus, it is desirable to find a way of overcoming the non-planarity typically found on a chip and substrate used in flip chip packaging resulting in better solder interconnections.
U.S. Pat. No. 5,587,337 to Idaka et al. discloses a method of manufacturing bump electrodes with a larger top surface area than bottom surface area. Both surfaces are flat which would not overcome the non-planarity of a chip and substrate when joining such components in flip chip packaging.
U.S. Pat. No. 5,527,734 to van der Putten discloses a method of forming solder interconnections having a truncated pyramid shape. The truncated pyramidal shape of the solder is formed using an electroless metallization bath. This reference neither suggests nor discloses a method of overcoming the non-planarity of components in flip chip packaging. The flat top surface of the solder would not overcome the non-planarity of the electronic components in an electronic module.
U.S. Pat. No. 5,478,007 to Marrs discloses a method and structure for flip chip interconnection of a chip to a substrate utilizing a ball bond having a conical section and a base section. The disclosure includes a number of additional steps in forming the ball bond which add to an already cumbersome process. The reference neither suggests nor discloses a method of overcoming the non-planarity of the electronic components in a module.
U.S. Pat. No. 5,244,143 to Ference et al. (and assigned to the assignee of the present invention) discloses an apparatus and method of injection molding solder mounds onto electronic devices. This reference neither suggests nor disclose a method of overcoming the non-planarity of the electronic components when assembling electronic modules.
U.S. Pat. No. 4,751,563 to Laibowitz et al. discloses an interconnect with a contamination resist cone formed on a substrate. This reference neither suggests nor discloses a method or apparatus for overcoming the non-planarity of electronic components when assembling electronic modules.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide a method of overcoming the non-planarity of electronic components used in assembling electronic modules.
It is another object of the present invention to provide a method of assembling electronic modules having improved solder interconnections.
It is yet another object of the present invention to provide a solder preform which overcomes the problem of camber on electronic components used in flip chip packaging.
A further object of the invention is to provide an electronic module having improved reliability, integrity and less prone to electrical failure of solder interconnections.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
SUMMARY OF THE INVENTION
The above and other objects and advantages, which will be apparent to one of skill in the art, are achieved in the present invention which is directed to, in a first aspect, a process for forming non-spherical shapes in solder interconnects on the surface of a substrate or a semiconductor die comprising the steps of: (a) depositing a first layer of solder onto a surface; (b) depositing a second layer of solder over the first layer of solder; and (c) forming the first and second layers of solder into a non-spherical shape, wherein the non-spherical shape of the solder interconnects facilitate joining between two surfaces.
Preferably, step (b) comprises depositing a second layer of solder having a lower melting temperature than the first layer of solder.
Preferably, step (c) comprises molding the first and second layers of solder into a non-spherical shape with a coining die comprising a rigid, non-solder wettable plate having an array of non-spherically shaped cavities, the die being heated to an elevated temperature. More preferably, step (c) comprises molding the plurality of solder interconnects with a heated coining die comprising a rigid, non-solder wettable plate having an array of non-spherically shaped cavities such that the coining die deforms the second layer of solder into a non-spherical shape. Most preferably, step (c) comprises molding the first and second layers of solder into a non-spherical shape, a portion of the non-spherical shapes comprising stand-offs.
The present invention relates to, in a second aspect, a process for forming non-spherical shapes in solder interconnects comprising the steps of: (a) providing a semiconductor wafer and a substrate for mounting the wafer; (b) applying a masking layer to the wafer or to the substrate; (c) patterning and developing a plurality of openings in the masking layer; (d) forming a plurality of solder interconnects by plating a layer of solder into the plurality of openings in the masking layer; and (e) molding the plurality of solder interconnects into a non-spherical shape, wherein the non-spherical shape of the plurality of solder interconnects facilitates joining of the wafer and the substrate in a non-planar environment.
The process may further include the step of applying a blanket seed layer to the wafer prior to step (b) wherein the step of applying a blanket seed layer to the wafer comprises applying a layer of chromium-copper alloy or a layer of titanium-copper alloy to the wafer. The seed layer not covered by the solder interconnects may be removed prior to step (e).
Preferably, step (b) comprises applying a photoresist to the wafer.
Preferably, step (d) comprises forming a plurality of solder interconnects by plating a first and second layer of solder into the plurality of openings in the masking layer. More preferably, the first layer of solder has a thickness of about 0.1 to 0.13 mm. More preferably, the second layer of solder has a thickness of about 0.02 to 0.025 mm. Even more preferably, step (d) comprises formin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for forming cone shaped solder for chip interconnection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for forming cone shaped solder for chip interconnection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for forming cone shaped solder for chip interconnection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2559607

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.