Output stage of a multi-stage algorithmic pattern generator...

Error detection/correction and fault detection/recovery – Pulse or data error handling – Digital logic testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C341S101000

Reexamination Certificate

active

06480981

ABSTRACT:

BACKGROUND OF THE INVENTION
In the prior art, an electronic system for testing chips is disclosed in U.S. Pat. No. 5,390,129. This prior art system is assigned to Unisys Corporation, who also is the assignee of the present invention.
A simplified block diagram of the prior art chip testing system is shown in FIG. 2 of patent '129. That system includes a computer 50 which is coupled via a time-shared bus 52 to a plurality of driver boards 100; and each driver board 100 is coupled to a respective burn-in board 500 which holds several integrated circuit chips that are to be tested.
In operation, the computer 50 sequentially sends each driver board 100 a separate set of test data patterns that are used to test the chips. These test data patterns are stored on each driver board in a large SRAM which is shown in FIG. 3 by reference numeral 107 and is shown in greater detail in FIG. 9 by reference numeral 145. Which particular driver board receives and stores the test data patterns at any one time is determined by an address circuit 100A that is on the driver board, and is shown in the FIG. 2 block diagram.
After the test data patterns are stored in the SRAM 145 on all of the driver boards 100, then the chips on all of the burn-in boards 500 can be tested in parallel. To do that, the test patterns are concurrently read from all of the SRAMs and sent through respective output driver modules 164, as shown in FIG. 14, to the chips on all of the burn-in boards 500.
One particular feature of the chip testing system in patent '129 is that each burn-in board includes an ID code which identifies the types of chips that are to be tested on the board. That ID code is sensed by the driver board
100
and sent to the computer 50; and in response, the test data patterns which the computer 50 sends to the driver board are tailored to the ID code that is sensed.
However, the chip testing system in patent '129 also has some major limitations which are imposed by the FIG. 2 architecture. For example, the computer 50 is the sole source of the test data patterns for all of the driver boards 100. Consequently, the speed of operation of the chip testing system is limited because the computer 50 can only send the test data patterns to a single driver board at a time over the bus 52.
Another limitation of the chip testing system in patent '129 is that each driver board 100 always tests all of the chips on a burn-in board 500 concurrently. However, each burn-in board inherently has a limit on the total amount of power which the chips on the board can dissipate. Thus, in order to keep the total power dissipation on each burn-in board
500
below a certain limit, the total number of chips on each burn-in board must be decreased as the maximum power dissipation per chip increases.
Still another limitation of the chip testing system in patent '129 is that the stored test data patterns in a large SRAM 145 on each driver board can make very inefficient use of the SRAM memory cells. FIG. 9 of patent '129 shows that each SRAM 145 receives nineteen address bits and has eight data output bits; and thus the SRAM 145 on each driver circuit has eight million memory cells. But, certain types of chips are tested by sending them sequences of serial bit streams that vary in number with time. Thus, if an SRAM 145 sends four bit streams during one time interval and sends only two bit streams during other time intervals, then half of the SRAM is wasted when the two bit streams are being sent.
To address the above problems with the chip testing system of patent '129, the present inventors filed three U.S. patent applications on Aug. 31, 1999 which are identified as follows:
1. U.S. Ser. No. 09/386,946 entitled “An Electronic System for Testing Chips Having A Selectable Number Of Pattern Generators That Concurrently Broadcast Different Bit Streams To Selectable Sets Of Chip Driver Circuits”;
2. U.S. Ser. No. 09/387,197 entitled “A Program Storage Device Containing Instructions That Are Spaced Apart By Unused Bits That End On Word Boundaries And Which Generate Chip Testing Bit Streams Of Any Length”; and,
3. U.S. Ser. No. 09/386,945 entitled “An Electronic System For Testing A Set Of Multiple Chips Concurrently Or Sequentially In Selectable Subsets Under Program Control To Limit Chip Power Dissipation”.
Each of the above patent applications include the same set of
FIGS. 1-12
, and they each have the same Detailed Description. Also, each of the above patent applications has a separate set of claims which cover different aspects of the chip testing system that is disclosed.
The invention as claimed in U.S. Ser. No. 09/386,946 addresses the limitation in patent '129 regarding speed of operation. In particular, those claims cover a system for testing integrated circuit chips which is comprised of a selectable number of pattern generators, each of which is coupled via a separate bus to a selectable number of chip driver circuits. Each pattern generator also is coupled to a respective memory, which stores different bit streams, word by word, from its respective memory; and it sends the words that are read to all of the chip driver circuits which are coupled to its separate bus, simultaneously. While that is occurring, each chip driver converts the words which it is sent into bit serial test signals which test multiple integrated circuit chips in parallel.
Since all the chip driver circuits which are coupled to one separate bus receive the words of the bit streams simultaneously from one pattern generator, the speed of operation is increased over the prior art. Also, since all of the pattern generators send different bit streams at the same time on separate busses, the speed of operation is further increased over the prior art.
In U.S. Ser. No. 09/387,197, the invention as claimed addresses the limitations of patent '129 regarding inefficient use of memory to store the test data patterns. In particular, these claims cover a system for testing integrated circuit chips which is comprised of a pattern generator that is coupled to a memory which stores variable length instructions that specify sets of bit streams for testing the chips. Each variable length instruction includes a code which indicates the number of bit streams in the set. Each bit stream in the set consists of a selectable number of bits which start on a word boundary and vary in increments of one bit. A respective series of unused bits starts immediately after each bit stream and ends on a word boundary.
If the code indicates that the number of bit streams in a set is only one, then the one bit stream is stored in consecutive words of the memory. If the code indicates the number bit streams in a set is more that one, then those multiple bit streams are stored in an interleaved fashion in consecutive words in the memory. Consequently, the only memory cells that are wasted are those which store the unused bits after each bit stream. But, those unused bits are insignificant in number when each of the bit streams is long.
In U.S. Ser. No. 09/386,945, the invention as claimed addresses the limitations of patent '129 regarding total power dissipation by the chips which being tested on the burn-in board. In particular, those claims cover a system for testing integrated circuit chips which is comprised of a signal generator that generates a clock signal; and a control circuit having a first input which receives the clock signal, a second input for receiving commands, and multiple outputs. A command source sends programmable sequences of the commands to the second input of the control circuit; and a means in the control circuit selects particular outputs in response to the commands and passing the clock signal from the first input to only the selected outputs.
All of the outputs of the control circuit are coupled through respective clock transmitters to different chips which are to be tested. Thus, in response to the programmable commands, the clock signal can be sent sequentially to the chips that are to be tested, in selectable su

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Output stage of a multi-stage algorithmic pattern generator... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Output stage of a multi-stage algorithmic pattern generator..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Output stage of a multi-stage algorithmic pattern generator... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2977228

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.