Negative resist process with simultaneous development and...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Making electrical device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S270100

Reexamination Certificate

active

06770423

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a process for producing amplified negative resist structures.
In the fabrication of microchips, semiconductor substrates are structured (or patterned) using thin layers of photoresists. The chemical nature of the photoresists can be selectively altered by exposing the photoresists using a photomask or by direct irradiation, with an electron beam, for example. Following a developing step, in which either the exposed or the unexposed areas of the photoresist are removed, a structured photoresist is obtained that is used as a mask for etching the semiconductor substrate, for example. In the case of dry etching, the etching operation is usually carried out with a fluorine or an oxygen plasma. In order to selectively etch only the bare areas of the substrate, therefore, the mask-forming resist structure must possess sufficient resistance to the plasma that is used. When using an etching plasma containing oxygen, the photoresist therefore usually includes groups containing silicon. In the course of the etching operation, these groups are converted into silicon dioxide, which forms an etch-stable protective layer on the photoresist. The silicon atoms either may already be present in the photoresist polymer or may be introduced into the polymer subsequently, following the development of the resist structure, in a consolidation reaction. For this purpose, reactive groups are provided, such as acid anhydride groups, carboxyl groups or acidic phenolic hydroxyl groups, to which the amplifying agent, which carries a corresponding reactive group, an amino group for example, can be chemically attached.
In order to be able to realize low exposure doses and short exposure times when exposing the photoresist, photoresists known as chemically amplified resists (CARs) have been developed. In this case the photoresist includes a photosensitive compound that liberates a catalyst on exposure. In a subsequent amplifying step, the catalyst is able to bring about a chemical reaction that gives rise to a marked change in the chemical nature of the photoresist. With a single quantum of light, which liberates one catalyst molecule, it is therefore possible to bring about a multiplicity of chemical reactions and to achieve a marked differentiation between the exposed and unexposed areas of the photoresist. The catalyst used is usually a strong acid that is liberated by a photoacid generator, an onium compound for example. The polymer contains acid-labile groups, such as tertiary butyl groups, which are eliminated under the action of the acid liberated. The elimination of the acid-labile group is generally accompanied by the liberation of an acidic group: for example, a carboxyl group or an acidic hydroxyl group. This brings about a marked change in the polarity of the polymer, i.e., in its solubility in polar solvents. The polymer originally used in the photoresist, carrying acid-labile groups, is soluble in apolar solvents or solvent mixtures having a low polarity, such as alkanes, but also in alcohols, ketones or esters, whereas the polymer following elimination of the acid-labile groups is soluble in polar solvents, generally water or basic, aqueous-organic developer solutions.
In connection with the production of resist structures, a range of processes have already been developed, which can be divided into two groups.
In the case of positive photoresists, the exposed areas of the photoresist are detached in the developing step and in the structured photoresist, for example, form trenches, whereas the unexposed areas remain on the substrate and form the lines of the photoresist structure.
For producing positive photoresist structures, the procedure described above can be followed. As a result of the exposure, a chemical reaction is initiated within the photoresist, by means of which the photoresist polymer becomes soluble in alkaline developer solutions: for example, a 2.38% strength solution of tetramethylammonium hydroxide in water. On development, then a corresponding positively structured photoresist is obtained.
In the case of negative resists, in contrast to the positive-working resists, the exposed portion of the resist remains on the substrate, whereas the unexposed portion is removed by the developer solution. When working with chemically amplified negative resists, exposure initially likewise liberates a catalyst, usually a strong acid. The catalyst brings about, for instance, a crosslinking reaction in the photoresist, as a result of which the solubility of the polymer in the developer medium is reduced. As a result of the crosslinking, the exposed area becomes insoluble, whereas the unexposed area can be removed in appropriate developers. Developers used are generally aqueous solutions, so that the polymer usually has polar groups in the unexposed state.
For a modification of the developing step, a positive photoresist can also be used to produce a negative resist structure. A process of this kind is described, for example, in U.S. Pat. No. 4,491,628. There, a layer of a positive photoresist that is applied to a substrate is first of all exposed as described above, and an acid is liberated from a photoacid generator. In the subsequent amplifying step, the acid-labile groups in the exposed areas are eliminated by heating, so that the polymer is then in a polar form. In contradistinction to the positive developing process described above, exposure is not carried out with a polar aqueous developer, but instead with an apolar solvent. As a result, only the unexposed areas of the substrate, in which the polymer has retained its original apolar form, are detached. Since the polar fractions of the resist, in which the polar groups—carboxylic acid groups, for example—have been produced by the exposure, are insoluble in apolar solvents, they remain as lines on the substrate.
Another negative photoresist includes not only a photobase, but also a thermoacid. A resist of this kind is described, for example, in Published PCT Patent Application PCT/DE00/04237. On exposure of the photoresist, a base is liberated in the exposed areas. In a subsequent amplifying step, an acid is liberated from the thermoacid generator by heating. In the exposed areas the acid is neutralized by the base being liberated beforehand and is therefore no longer available as a catalyst. In the unexposed areas, the acid catalyzes the elimination of the acid-labile groups from the polymer. Accordingly, in the unexposed areas, the polymer is converted from its apolar form into a polar form. In the subsequent developer step, therefore, the unexposed areas can be selectively detached from the substrate using an aqueous-alkaline developer, while the exposed areas remain as lines on the substrate.
As already mentioned, for etching the substrate, the resist structure must possess sufficient etch resistance. For this purpose, for instance, the lines of the resist structure must have a sufficient layer thickness. This is a particular problem in the case of resists for the 157 nm and the 13 nm technology, since at these wavelengths the photoresists known to date exhibit high absorption. Accordingly, only very thin polymer films can be used, in order to ensure that the radiation used for exposure is able to penetrate even into the deep areas of the resist in sufficient intensity, in order to be able to liberate sufficient quantities of catalyst. If insufficient quantities of catalyst are liberated in the lower layers of the photoresist, elimination of the acid-labile groups is incomplete, or in a worst case scenario, does not take place at all. A consequence of this is that following development residues of the polymer remain in the trenches, forming what are known as resist feet. Because of its low layer thickness, the resistance of the structured photoresist to an etching plasma is insufficient, which is why its etch resistance must be increased. For this purpose, following development, the structured resist is chemically amplified. Where the resist structures have

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Negative resist process with simultaneous development and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Negative resist process with simultaneous development and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Negative resist process with simultaneous development and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3360348

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.