Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate
Reexamination Certificate
2001-11-02
2003-12-02
Whitehead, Jr., Carl (Department: 2813)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having insulated gate
C438S242000, C438S396000, C438S295000
Reexamination Certificate
active
06656786
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a semiconductor device and manufacturing method thereof. More specifically, the present invention relates to a semiconductor device having a capacitor and a contact plug in a DRAM (Dynamic Random Access Memory) or the like, and to a manufacturing method thereof. The present invention also relates to MIM capacitor fabrication methods and systems. The present invention also relates to logic-based embedded DRAM devices and manufacturing methods thereof.
BACKGROUND OF THE INVENTION
In the integrated circuit (IC) industry, manufacturers are currently imbedding dynamic random access memory (DRAM) arrays on the same substrate as CPU cores or other logic devices. This technology is being referred to as embedded DRAM (eDRAM). Embedded DRAM generally can provide microcontroller (MCU) and other embedded controllers faster access to larger capacities of on-chip memory at a lower cost than that currently available using conventional embedded static random access memory (SRAM) and/or electrically erasable programmable read only memory (EEPROM).
A semiconductor memory, such as a DRAM or embedded DRAM, mainly consists of a transistor and a capacitor. Therefore, improvement in the efficiency of these two structures tends to be the direction in which technology is developing. DRAM is generally a volatile memory, and the way to store digital signals is decided by charge or discharge of the capacitor in the DRAM. When the power applied on the DRAM is turned off, the data stored in the memory cell completely disappears. A typical DRAM cell usually includes at least one field effect transistor (FET) and one capacitor. The capacitor is used to store the signals in the cell of DRAM. If more charges can be stored in the capacitor, the capacitor has less interference when the amplifier senses the data. In recent years, the memory cell of a DRAM has been miniaturized more and more from generation to generation. Even if the memory cell is minimized, a specific charge is essentially stored in the storage capacitor of the cell to store the information.
When the semiconductor enters the deep sub-micron process, the size of the device becomes smaller. For the conventional DRAM structure, this means that the space used by the capacitor becomes smaller. Since computer software is gradually becoming huge, even more memory capacity is required. In the case where it is necessary to have a smaller size with an increased capacity, the conventional method of fabricating the DRAM capacitor needs to change in order to fulfill the requirements of the trend.
There are two approaches at present for reducing the size of the capacitor while increasing its memory capacity. One way is to select a high-dielectric material, and the other is to increase the surface area of the capacitor.
There are two main types of capacitor that increase capacitor area. These are the deep trench-type and the stacked-type, where digging out a trench and filling the trench with a conductive layer, a capacitive dielectric layer and a conductive layer in sequence for the capacitor form the deep trench-type capacitor.
When a dielectric material with a relatively high dielectric constant is used in a stacked capacitor, the materials for manufacturing the upper and the bottom electrodes need to be gradually replaced in order to enhance the performance of the capacitor. A structure known as a metal-insulator-metal (MIM) structure possesses a low-interfacial reaction specificity to enhance the performance of the capacitor. Therefore, it has become an important topic of research for the semiconductor capacitor in the future.
Cell areas are reduced, as a semiconductor device needs ultra-high integrity. Thus, many studies for increasing the capacitance of a capacitor are being developed. There are various ways of increasing the capacitance such as forming a stacked or trench typed three-dimensional structure, whereby a surface area of a dielectric layer is increased.
In order to constitute a cell area in a DRAM fabrication, transistors and the like are formed on a semiconductor substrate, storage and plate electrodes of polycrystalline silicon and a dielectric layer are formed wherein the dielectric layer lies between the electrodes, and metal wires are formed to connect the devices one another.
The obtainable capacitance of the storage capacitor tends to decrease dependent upon the level of the miniaturization of the storage cell. On the other hand, the necessary capacitance of the capacitor is almost constant when the storing voltage to be applied across the capacitor is fixed. Therefore, it is necessary for the capacitor to compensate the capacitance decrease due to the miniaturization by, for example, increasing the surface area of the capacitor. This surface area increase has been popularly realized by increasing the thickness of the lower electrode (or, storage electrode) of the capacitor. A typical capacitor utilized in DRAM fabrication is the Metal Insulator Metal (MIM) capacitor, which is usually located in the memory region of DRAM and embedded DRAM to increase the capacitance of the capacitor.
To integrate logic and memory devices in a single chip configuration without degrading transistor performance, low-temperature MIM capacitors with Ta
2
O
5
or BST as a dielectric material are currently used in the semiconductor manufacturing arts. In conventional MIM capacitor manufacturing processes, the total number of additional lithography steps generally required to manufacture capacitors in the BEOL process is in the range of 2 to 3. In order to manufacture SOC memory devices, however, additional lithography steps may be required. Additional lithography steps, however, increase mask add-on costs. Thus, the present inventor has concluded that a need exists for a new process for manufacturing logic-based embedded DRAM, including MIM capacitors thereof, without increasing mask add-on costs as one or more back-end lithography steps are added. The present invention thus introduces a novel process that generally adds only one back-end lithography step for MIM capacitor manufacturing, while greatly reducing mask add-on costs, thereby leading to the feasibility of SOC memory manufacturing processes.
BRIEF SUMMARY OF THE INVENTION
The following summary of the invention is provided to facilitate an understanding of some of the innovative features unique to the present invention, and is not intended to be a full description. A full appreciation of the various aspects of the invention can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
It is therefore one aspect of the present invention to provide an improved semiconductor fabrication method and system.
It is another aspect of the present invention to provide a method and system for fabricating a MIM capacitor.
It is yet another aspect of the present invention to provide a method and system for fabricating an MIM (metal insulator metal) capacitor utilized in an embedded DRAM-based semiconductor device.
The above and other aspects of the present invention are achieved as is now described. A method and system is disclosed herein for manufacturing an MIM capacitor for utilization with a logic-based embedded DRAM device. At least one transistor, an interlayer dielectric, at least one contact and at least one metal one layer are generally formed on a substrate during a front end manufacturing operation of the capacitor on the substrate. An inter-metal dielectric layer is deposited upon the substrate, followed thereafter by a chemical mechanical polishing operation. The inter-metal dielectric layer comprises an IMD
1
layer. Additionally, a lithographic operation is performed upon the substrate. Also, at least one dielectric deposition layer is generally on the substrate, followed thereafter by a chemical mechanical polishing operation and a stop on an oxide layer formed on the substrate. At least one metal two layer may then be formed on substrate and associated layers thereof, thereby resulting in the formation of a capacito
Chang Hsien-Yuan
Chiang Min-Hsiung
Tseng Hsiao-Hui
Yang Tazy-Schiuan
Huynh Yennhu B
Jr. Carl Whitehead
Taiwan Semiconductor Manufacturing Co. Ltd.
Tung & Associates
LandOfFree
MIM process for logic-based embedded RAM having front end... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with MIM process for logic-based embedded RAM having front end..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and MIM process for logic-based embedded RAM having front end... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3145948