Method for fabricating semiconductor device

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S253000, C438S393000

Reexamination Certificate

active

06730560

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method for fabricating a semiconductor device including a capacitor device using a ferroelectric or high dielectric of a metal oxide as a capacitor dielectric film.
A capacitor device including, as a capacitor dielectric film, a ferroelectric film or a high dielectric film made of a metal oxide has remnant polarization derived from its hysteresis characteristic and a high dielectric constant. Therefore, such a capacitor device has been used instead of a conventional capacitor device including a capacitor dielectric film of silicon oxide or silicon nitride in the field of nonvolatile memories and DRAMs.
In order to form a capacitor device on one semiconductor substrate (wafer), a plurality of fabrication procedures should be performed, and therefore, a semiconductor substrate under fabrication is generally contained in a plastic container during a convey time when the semiconductor substrate is being conveyed between a plurality of fabrication systems or a wait time before or after the conveyance.
The present inventor has found the following problem in a conventional method for fabricating a semiconductor device including a capacitor device using a ferroelectric or a high dielectric:
An interlayer insulating film formed between a capacitor device and an interconnect layer on a semiconductor substrate absorbs atmospheric moisture during the convey time or the wait time between one procedure and another subsequent procedure, and the absorbed moisture degrades the electric characteristic of the capacitor dielectric film. The cause of this problem will now be described.
FIG. 11
shows the dependency on the annealing temperature of the remnant polarization value and the breakdown voltage value of a conventional capacitor device including a ferroelectric as a capacitor dielectric film. In this case, with an interconnect formed above the capacitor device, an interlayer insulating film of silicon oxide obtained by causing a reaction between ozone (O
3
) and TEOS (tetraethyl orthosilicate) at the atmospheric pressure (namely, ozone TEOS) is formed, and annealing is performed in an oxygen atmosphere at a temperature of 300° C., 350° C. or 400° C.
As is understood from
FIG. 11
, when the annealing is performed at 400° C., both the remnant polarization value and the breakdown voltage value are lowered.
FIG. 12
shows the dependency on the heating temperature of the concentration of moisture desorbed from silicon oxide obtained by thermal desorption spectroscopy (TDS). As is understood from
FIG. 12
, when the heating temperature for a semiconductor substrate exceeds 200° C., moisture desorbed from silicon oxide is observed, and the peak of the moisture concentration is found at 400° C. regardless of the substrate temperature.
These facts seem to reveal the following: The interlayer insulating film made of ozone TEOS absorbs the atmospheric moisture during the convey time or the wait time, and the absorbed moisture is easily desorbed and hence is reacted with the ferroelectric through the subsequently performed annealing, resulting in lowering the remnant polarization value.
On the other hand, however, in order to improve the yield and the reliability of a semiconductor device, it is necessary to perform annealing and form a protection film at a high temperature for recovering a damage caused in forming an interconnect and for preventing corrosion of aluminum.
SUMMARY OF THE INVENTION
The present invention was devised to overcome the above-described conventional problem, and an object is preventing the electric characteristic of a capacitor dielectric film including a ferroelectric of a metal oxide from being degraded by moisture desorbed from an interlayer insulating film through annealing.
In order to achieve the object, according to a method of this invention for fabricating a semiconductor device including a capacitor device having a capacitor dielectric film of a metal oxide, an interlayer insulating film of an oxide is prevented from including moisture during a convey time or a wait time before a subsequent step.
Specifically, the first method for fabricating a semiconductor device of this invention includes a first step of forming, on a substrate, a capacitor device including a capacitor dielectric film of a metal oxide; a second step of depositing an interlayer insulating film of an oxide on the capacitor device; and a third step of forming an opening in a region of the interlayer insulating film disposed above the capacitor device and forming, on the interlayer insulating film, a conducting film connected to the capacitor device through the opening in such a manner that a portion of the interlayer insulating film disposed above a periphery of the capacitor device is exposed, and during a convey time when the substrate on which the conducting film has been formed is being conveyed from the third step to a following forth step or during a wait time before or after conveying the substrate from the third step to the fourth step, the substrate on which the conducting film has been formed is contained in a container an atmosphere within which has a lower moisture concentration than the ambient atmosphere until a substantially whole top face of the interlayer insulating film is covered with another member.
In the first method for fabricating a semiconductor device, the amount of moisture absorbed from the air by the interlayer insulating film formed on the substrate during the convey time or the wait time is reduced. Therefore, even when annealing is performed in a subsequent step, the annealed interlayer insulating film minimally desorbs moisture, resulting in preventing electric characteristic degradation of the capacitor dielectric film derived from reduction or the like of the capacitor dielectric film including a ferroelectric or the like of a metal oxide.
In the first method for fabricating a semiconductor device, a barrier film made from the conducting film is preferably formed in the third step.
In this case, an interconnect formation film corresponding to the another member is preferably deposited over the interlayer insulating film including the conducting film in the fourth step.
In the first method for fabricating a semiconductor device, an interconnect made from the conducting film is preferably formed in the third step.
The first method for fabricating a semiconductor device preferably further includes, after the fourth step, a fifth step of performing annealing on the conducting film at a temperature of approximately 200° C. or more. Thus, annealing for recovering damage having been caused in patterning the capacitor dielectric film or the conducting film can be definitely performed.
In the first method for fabricating a semiconductor device, the interlayer insulating film is preferably made of silicon oxide.
In the first method for fabricating a semiconductor device, the conducting film is preferably a single-layer film made of one of or a multilayer film including at least two of titanium, titanium nitride, aluminum, tungsten and copper.
The second method for fabricating a semiconductor device of this invention includes a first step of forming, on a substrate, a capacitor device including a capacitor dielectric film of a metal oxide; a second step of forming a first interlayer insulating film on the capacitor device; a third step of forming, on the first interlayer insulating film, a first conducting film electrically connected to the capacitor device; a fourth step of forming a second interlayer insulating film of an oxide on the first interlayer insulating film including the first conducting film; and a fifth step of forming a second conducting film on a substantially whole top face of the second interlayer insulating film, and during a convey time when the substrate on which the second interlayer insulating film has been formed is being conveyed from the fourth step to the fifth step or during a wait time before or after conveying the substrate from the fourth step to the fifth step, the substrate on whic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for fabricating semiconductor device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for fabricating semiconductor device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating semiconductor device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3267835

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.