Group III nitride compound semiconductor device and method...

Semiconductor device manufacturing: process – Making device or circuit emissive of nonelectrical signal – Compound semiconductor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S022000, C438S044000

Reexamination Certificate

active

06342404

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a group III nitride compound semiconductor device and a method for producing the same.
The present application is based on Japanese Patent Application No. Hei. 11-92948,which is incorporated herein by reference.
2. Description of the Related Art
A group III nitride compound semiconductor device is formed from group III nitride compound semiconductors grown on a substrate such as a sapphire substrate by a method such as an MOCVD method. On the other hand, a technique using a silicon or silicon carbide substrate inexpensive and itself electrically conductive for growing group III nitride compound semiconductor layers thereon has been examined.
In the case of a silicon substrate, however, the thermal expansion coefficient of the substrate is largely different from that of a GaN semiconductor layer. As a result, stress due to the difference between the thermal expansion coefficients may be caused in the group III nitride compound semiconductor layers in accordance with the atmospheric temperature (increased to about 1000° C.) for growth of group III nitride compound semiconductors. When things come to the worst, cracking may occur.
The problem that stress due to the difference between the thermal expansion coefficients is caused in the group III nitride compound semiconductors is not limited to the silicon substrate. This problem may be caused as a problem which must be solved when the size of a substrate is large, regardless of the material of the substrate.
SUMMARY OF THE INVENTION
The present invention is achieved in consideration of such circumstances and the configuration thereof is as follows.
That is, a method for producing a group III nitride compound semiconductor device, comprises the steps of: forming a first environment division and a second environment division on a surface of a substrate; and laminating a plurality of group III nitride compound semiconductor layers for constituting a device on said first environment division.
According to the producing method, the group III nitride compound semiconductors for constituting a device are formed only on the first environment division of the substrate. Hence, the group III nitride compound semiconductor layers are grown in small areas on the substrate individually and separately so that the areas are not connected to one another. Hence, even in the case where the thermal expansion coefficients of the group III nitride compound semiconductor layers are different from that of the substrate, stress accumulated in the inside of the group III nitride compound semiconductor layers in each area becomes small because each region for each area of the layers is small. Hence, not only is cracking, or the like, substantially prevented from occurring in each lump of the group III nitride compound semiconductor layers but also the crystallinity of the group III nitride compound semiconductor layers themselves is improved.
Further, because each lump of the group III nitride compound semiconductor layers is so small that stress is not accumulated therein regardless of the size of the substrate, the size of the substrate can be selected at option. Hence, the productivity can be improved when the size of the substrate is selected to be large.
In the above description, the material of the substrate is not particularly limited so long as the substrate can be adapted to the group III nitride compound semiconductors. Examples of the material of such a substrate may include sapphire, silicon, silicon carbide, zinc oxide, gallium phosphide, gallium arsenide, magnesium oxide, manganese oxide, etc.
Each first environment division is a portion which is provided so that single-crystal group III nitride compound semiconductors of good crystallinity are grown thereon to thereby constitute a device. If the first environment division is in a state in which the substrate is exposed, group III nitride compound semiconductors of good crystallinity can be grown thereon. Incidentally, an undercoat layer of a metal nitride (such as TiN), a metal (such as Ti), or the like, may be formed on the first environment division in advance.
The shape of the first environment division is not particularly limited so long as a device structure can be formed thereon. Taking into account the fact that the substrate must be cut into individual devices, it is preferable to make the shape of each first environment division into a rectangle. More preferably, the shape is a square. One device may be formed in each of the first environment divisions, or each of the first environment divisions may be set to be rather large so that a plurality of devices can be formed therein. The length of each side of the rectangle is selected to be in a range of from 100 to 1000 &mgr;m. If the length of each side of each first environment division is smaller than 100 &mgr;m, it is impossible to form any device. If the length of each side is contrariwise larger than 1000 &mgr;m, the group III nitride compound semiconductor layer grown therein becomes so large that there is a possibility that stress caused by the difference in expansion coefficient between the semiconductor layer and the substrate may be accumulated in the inside of the group III nitride compound semiconductor layer. More preferably, the length of each side of the rectangle of each first environment division is selected to be in a range of from 200 to 800 &mgr;m. In an embodiment, each first environment division is shaped like a square and the length of each side of the square is selected to be 350 &mgr;m which is equal to that in an existing product (light-emitting diode) sold by this applicant.
Incidentally, if corner portions of the rectangle of each first environment division are rounded off, that is, if corner portions of the rectangle are chamfered, stress to be applied to the group III nitride compound semiconductor layer is relaxed so that the crystallinity thereof is improved more greatly.
The second environment division prevents group III nitride compound semiconductors for constituting devices from being grown thereon, so that the group III nitride compound semiconductor layer lumps grown on the first environment divisions for constituting devices respectively are separated from one another by the second environment division. In other words, the group III nitride compound semiconductor layer lumps for constituting devices respectively are grown individually separately on the first environment divisions by the presence of the second environment division.
As a first mode for achieving the above description, the second environment division is made of a material such as silicon oxide, silicon nitride, or the like, on which group III nitride compound semiconductors cannot be grown. That is, the group III nitride compound semiconductor lumps grown on the first environment divisions respectively are separated from one another by a silicon oxide or silicon nitride layer formed on the substrate. The thickness of the separation layer is preferably set to be slightly larger than the designed thickness of the group III nitride compound semiconductor layer so that the group III nitride compound semiconductor lumps are not connected to one another, that is, are grown individually separately.
As another mode, the second environment division is provided so that a group III nitride compound semiconductor can be grown on the second environment division but the group III nitride compound semiconductor is made different in crystallinity (inclusive of an amorphous state) from the group III nitride compound semiconductors (for constituting devices) grown on the first environment divisions. That is, if the group III nitride compound semiconductor grown on the second environment division is inferior in crystallinity to that grown on the first environment division, internal stress due to the difference in thermal expansion coefficient from the substrate is concentrated in the structurally fragile group III nitride compound semiconductor layer grown on the se

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Group III nitride compound semiconductor device and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Group III nitride compound semiconductor device and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Group III nitride compound semiconductor device and method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2863252

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.