Devices for measuring and adjusting illumination uniformity...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Electron beam imaging

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S942000, C250S397000, C250S492220, C250S492230

Reexamination Certificate

active

06635402

ABSTRACT:

FIELD OF THE INVENTION
The present invention pertains to microlithography (projection-transfer of a pattern, defined on a reticle or mask, onto a sensitive substrate using a charged particle beam (e.g., electron beam or ion beam) as an energy beam). Microlithography is a key technique used in the fabrication of microelectronic devices such as semiconductor integrated circuits, displays, or the like. More specifically, the invention pertains to methods for measuring and adjusting an illumination-optical system in a charged-particle-beam microlithography apparatus.
BACKGROUND OF THE INVENTION
Conventional microlithography apparatus and methods are summarized below in the context of using an electron beam as a representative charged particle beam. Electron-beam microlithography has the potential of producing higher resolution than optical microlithography (using light such as ultraviolet light). Unfortunately, the throughput currently obtained using conventional microlithography apparatus is disappointingly low.
Various techniques have been evaluated to improve throughput. Exemplary current techniques include cell projection, in which certain regions of a pattern, especially regions in which a basic pattern unit is repeated a large number of times (e.g., memory cells), are transferred multiple times from the basic pattern unit as defined on the reticle. Cell projection is known also as a “pattern-area batch-exposure system.” When applied to mass production of semiconductor “chips,” however, throughput typically is an order of magnitude lower than realized using optical microlithography. As the feature sizes of integrated circuits continue to decrease with increasing miniaturization, throughput becomes increasingly critical for determining the economic viability of fabrication processes.
An approach developed to achieve substantially improved throughput of electron-beam microlithography is the so-called full-chip batch-transfer approach, in which the entire pattern as defined on the reticle is exposed in a single exposure or “shot.” The pattern is projected, with demagnification, onto the substrate using a projection lens. In other words, in this approach, all regions of the chip pattern on the reticle are illuminated at a single instant with an electron-beam “illumination beam.” Unfortunately, the larger the chip pattern, the greater the difficulty of adequately controlling aberrations over the entire optical field of the illumination-optical system and projection-optical system.
To solve the aberration problems experienced using the full-chip batch-transfer approach, a “divided-reticle” approach has been proposed, in which the pattern as defined on the reticle is divided into multiple exposure units usually called “subfields.” The subfields, typically sized much larger than the pattern units used in cell projection, are exposed individually in a sequential manner onto a suitable substrate (e.g., semiconductor wafer). The respective images of the subfields as projected onto the substrate are placed so as to be “stitched” together in a manner that yields a contiguous and properly aligned image of the entire pattern on the wafer. In this regard, reference is made to U.S. Pat. No. 5,260,151, incorporated herein by reference and Japan Kókai Patent Document No. Hei 8-186070.
An electron beam as used for cell projection has a very small beam diameter (about 5 &mgr;m at the reticle) for transferring the basic pattern units. Achieving homogeneous illumination of a region of such small dimensions on the reticle (i.e., achieving constant beam-current density across the illuminated region) is relatively easy to achieve. The electron beam is produced using an electron source having a conical electron-emitting surface. From the electron source, the illumination beam passes through a beam-shaping aperture that, especially because the beam is very narrow, does not degrade the transverse uniformity of the beam significantly. As a result, illumination homogeneity can be obtained.
However, with divided-reticle electron-beam microlithography apparatus, the area illuminated at any one instant by the illumination beam is much larger than in cell projection (e.g., subfield sizes of 1-mm square are used commonly). To illuminate such an area, a much larger-diameter illumination beam is used than used for cell-projection. Unfortunately, in conventional divided-reticle microlithography performed using a source having a conical electron-emitting surface, satisfactory uniformity of illumination is not achievable.
One approach to obtaining more uniform illumination in electron-beam microlithography apparatus (especially apparatus for performing batch transfer of large pattern areas) is using a source having a planar electron-emitting surface, and forming a “focused” image of the electron-emitting surface on the reticle. According to this approach, the quality of illumination reflects the quality and status of the beam source and of the lenses in the illumination-optical system. Unfortunately, using this approach, achieving actual illumination uniformity is exquisitely sensitive to variables such as (but not limited to) any of various operational parameters of the electron source and illumination-optical system, and variations in the planarity or condition of the electron-emission surface. Also, the various adjustments necessary to achieve and maintain uniform illumination uniformity are many and complex.
Highly accurate measurements of the transverse distribution of beam-current density (as a way to measure illumination uniformity) are required to make the adjustments to the electron-optical system and electron source necessary to achieve and maintain illumination uniformity. The measurement method conventionally used involves placing a measurement aperture (diameter of about 10 &mgr;m, made by forming an aperture in a metal sheet, such as molybdenum or tantalum, that is about 1 mm thick) on the reticle stage or on the substrate stage (“wafer stage”). The illumination beam is scanned over the measurement aperture while measuring the current density of charged particles passing through the measurement aperture, thereby providing a measurement of the illumination distribution achieved by the illumination beam.
Forming a measurement aperture by etching a hole in a metal sheet is extremely difficult. Also, an aperture having a diameter of 10 &mgr;m is essentially the smallest that can be made by etching a metal sheet. A 10-&mgr;m diameter aperture simply is too large to achieve a sufficiently high measurement resolution necessary for current needs. Another problem with this conventional method is that the relatively thick metal sheet tends to absorb particles of the illumination beam and consequently is heated excessively during use for making measurements. The heating causes deformations of the sheet (and can cause actual melting of the sheet) during use. Because of these problems, the required fine adjustments of the beam source or of the lenses of the illumination-optical system to obtain a satisfactorily uniform illumination distribution cannot be performed using conventional methods or measurement devices.
SUMMARY OF THE INVENTION
In view of the shortcomings of conventional measurement devices and methods as summarized above, an object of the invention is to provide improved devices and methods for measuring and adjusting the distribution of current density of a charged-particle-beam (CPB) illumination beam passing through an illumination-optical system. Another object is to provide improved methods and devices for achieving uniformity (homogeneity) of the illumination beam as incident on the reticle.
To such ends and according to a first aspect of the invention, methods are provided for measuring the illumination uniformity of the illumination beam. The methods are provided in the context of performing CPB microlithography in which an illumination beam, generated by a planar CPB-emission surface and passing through an illumination-optical system, illuminates a region of a patterned reticle to produce an i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Devices for measuring and adjusting illumination uniformity... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Devices for measuring and adjusting illumination uniformity..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices for measuring and adjusting illumination uniformity... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3112432

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.