Darkspace shield for improved RF transmission in inductively...

Chemistry: electrical and wave energy – Processes and products – Coating – forming or etching by sputtering

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S298080, C204S298110

Reexamination Certificate

active

06190513

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to plasma generators, and more particularly, to a method and apparatus for generating a plasma to sputter deposit a layer of material in the fabrication of semiconductor devices.
BACKGROUND OF THE INVENTION
Low density plasmas have become convenient sources of energetic ions and activated atoms which can be employed in a variety of semiconductor device fabrication processes including surface treatments, depositions, and etching processes. For example, to deposit materials onto a semiconductor wafer using a sputter deposition process, a plasma is produced in the vicinity of a sputter target material which is negatively biased. Ions created adjacent to the target impact the surface of the target to dislodge, i.e., “sputter” material from the target. The sputtered materials are then transported and deposited on the surface of the semiconductor wafer.
Sputtered material has a tendency to travel in straight line paths from the target to the substrate being deposited, at angles which are oblique to the surface of the substrate. As a consequence, materials deposited in etched trenches and holes of semiconductor devices having trenches or holes with a high depth to width aspect ratio, can bridge over causing undesirable cavities in the deposition layer. To prevent such cavities, the sputtered material can be redirected into substantially vertical paths between the target and the substrate by negatively charging the substrate to position vertically oriented electric fields adjacent the substrate if the sputtered material is sufficiently ionized by the plasma. However, material sputtered in a low density plasma often has an ionization degree of less than 1% which is usually insufficient to avoid the formation of an excessive number of cavities. Accordingly, it is desirable to increase the density of the plasma to increase the ionization rate of the sputtered material in order to decrease the formation of unwanted cavities in the deposition layer. As used herein, the term “dense plasma” is intended to refer to one that has a high electron and ion density.
There are several known techniques for exciting a plasma with RF fields including capacitive coupling, inductive coupling and wave heating. In a standard inductively coupled plasma (ICP) generator, RF current passing through a coil surrounding the plasma induces electromagnetic currents in the plasma. These currents heat the conducting plasma by ohmic heating, so that it is sustained in steady state. As shown in U.S. Pat. No. 4,362,632, for example, current through a coil is supplied by an RF generator coupled to the coil through an impedance matching network, such that the coil acts as the first windings of a transformer. The plasma acts as a single turn second winding of a transformer.
It has been found that material sputtered from the edges of the target can contribute to non-uniform depositions. In order to promote uniform deposition, it is often preferred to place what is referred to as a “darkspace” shield adjacent the edge of the target. The darkspace shield reduces sputtering of the target edges by shielding the target edges from the plasma.
In a number of deposition chambers such as a physical vapor deposition chamber, the chamber walls are often formed of a conductive metal such as stainless steel. Because of the conductivity of the chamber walls, it is often preferred to place the antenna coils or electrodes within the chamber itself because the conducting chamber walls would block or substantially attenuate the electromagnetic energy radiating from the antenna. As a result, the coil and its supporting structures are directly exposed to the deposition flux and energetic plasma particles. This is a potential source of contamination of the film deposited on the wafer, and is undesirable.
To protect the coils, shields made from nonconducting materials, such as ceramics, can be placed in front of the coil. However, many deposition processes involve deposition of conductive materials such as aluminum on the electronic device being fabricated. Because the conductive material will coat the ceramic shield, it will soon become conducting, thus again substantially attenuating penetration of electromagnetic radiation into the plasma. Consequently, it is often preferred to place a shield wall behind the coil to protect the interior of the deposition chamber from the deposition material. However, the problem of particulate matter often remains for sputtering chambers of this design.
In copending application Ser. No. 08/559,345, pending entitled “Method and Apparatus for Generating a Plasma” filed Nov. 15, 1995 (Attorney Docket #938/PVD/DV) a Continuing Prosecution Application having been filed on Jan. 29, 1999 (Attorney Docket #938.P1/PVD/DV) and application Ser. No. 08/730,722, pending entitled “Active Shield for Generating a Plasma for Sputtering,” filed Oct. 8, 1996 (Attorney Docket #1207/PVD/DV), incorporated by reference in their entireties, active shield designs have been disclosed in which a modified conductive shield is coupled to an RF source such that the shield itself functions as a coil to couple RF energy into the plasma. The present invention is directed to a further improvement of such active shield designs to increase the efficiency of energy transmission.
SUMMARY OF THE PREFERRED EMBODIMENTS
It is an object of the present invention to provide an improved method and apparatus for generating a plasma within a chamber and for sputter-depositing a layer which obviate, for practical purposes, the above-mentioned limitations.
These and other objects and advantages are achieved by, in accordance with one aspect of the invention, a plasma generating apparatus which comprises an active shield which inductively couples electromagnetic energy into a plasma, and a darkspace shield for shielding the target sidewalls, in which the darkspace shield has a slot or other discontinuity to prevent eddy currents from flowing in the darkspace shield. Such an arrangement has been found to prevent or reduce RF power losses due to eddy currents that would otherwise flow in an unslotted darkspace shield. By reducing the RF power losses, the RF coupling efficiency can also be improved.
In a preferred embodiment, an apparatus for energizing a plasma within a semiconductor fabrication system to sputter material onto a workpiece may include a semiconductor fabrication chamber having a slotted darkspace shield and a plasma generation region adjacent the slotted darkspace shield. A coil-shield carried by the chamber is positioned to couple energy into the plasma generation region, while the slotted darkspace shield prevents eddy currents from flowing in the darkspace shield in response to energy coupled into the plasma generation region. As a consequence, the RF energy is more efficiently coupled into the plasma generation region by the coil-shield. The target and coil-shield may both include titanium, aluminum or other suitable materials.


REFERENCES:
patent: 3619402 (1971-11-01), Wurm et al.
patent: 4336118 (1982-06-01), Patten et al.
patent: 4362632 (1982-12-01), Jacob
patent: 4626312 (1986-12-01), Tracy
patent: 4661228 (1987-04-01), Mintz
patent: 4716491 (1987-12-01), Ohno et al.
patent: 4792732 (1988-12-01), O'Loughlin
patent: 4842703 (1989-06-01), Class et al.
patent: 4844775 (1989-07-01), Keeble
patent: 4865712 (1989-09-01), Mintz
patent: 4871421 (1989-10-01), Ogle et al.
patent: 4918031 (1990-04-01), Flamm et al.
patent: 4925542 (1990-05-01), Kidd
patent: 4941915 (1990-07-01), Matsuoka et al.
patent: 4948458 (1990-08-01), Ogle
patent: 4990229 (1991-02-01), Campbell et al.
patent: 4999096 (1991-03-01), Nihei et al.
patent: 5065698 (1991-11-01), Koike
patent: 5091049 (1992-02-01), Campbell et al.
patent: 5122251 (1992-06-01), Campbell et al.
patent: 5126028 (1992-06-01), Hurwitt et al.
patent: 5135629 (1992-08-01), Sawada et al.
patent: 5146137 (1992-09-01), Gesche et al.
patent: 5175608 (1992-12-01), Nihei et al.
patent: 5178739 (1993-01-01), Barnes et al.
patent: 5206516 (19

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Darkspace shield for improved RF transmission in inductively... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Darkspace shield for improved RF transmission in inductively..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Darkspace shield for improved RF transmission in inductively... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2568331

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.