Error detection/correction and fault detection/recovery – Pulse or data error handling – Digital logic testing
Reexamination Certificate
2001-02-12
2004-03-30
Decady, Albert (Department: 2133)
Error detection/correction and fault detection/recovery
Pulse or data error handling
Digital logic testing
C714S733000
Reexamination Certificate
active
06715118
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a configuration for generating signal impulses of defined pulse lengths in a module with a BIST function.
What is meant by a BIST (Built-In Self-Test) function is the capability of a module to subject the module or a part thereof—otherwise known as a DUT (Device Under Test)—to a self-test using logic that is integrated into the module. It is often a precondition of such a self-test that the DUT stores internally required signal impulses of defined lengths, also known as “separate time values”, such as Trcd (rcd=RAS CAS Delay), namely the time value indicating how quickly information can be read from a cell field subsequent to the opening of a word line, or Tas (as=address set-up), i.e., an address set time value.
Hitherto, a tester has delivered the signal impulses of defined lengths, i.e., time values, to the DUT from outside. Such a tester is associated with various disadvantages, including the fact that the tester must be reapplied to the DUT for each test in which signal pulses of defined lengths are required. Such reapplication may necessitate numerous tester channels if different pins (terminals) are required for the application of the individual signal impulses of defined lengths. Variations in technologies or processes can lead to incorrect measurements when a plurality of testers are used to test a plurality of DUTs.
German Patent DE 4 244 696 C2 discloses a circuit for precision time adjustment. The circuit forms an output signal having a precisely controlled time edge based on an input signal having a rough time edge. By way of a data bus, an input data signal that specifies a desired programmed digital delay is written into an alpha register. The most significant bits of the value that is stored in the alpha register are applied to a tap or pick-off delay line in order to prescribe an approximate delay time. The least significant bits of the value that is stored in the alpha register are delivered as addresses to a RAM, which sends calibration data for an appertaining fine delay, likewise into the tap delay line, through a register. Based on the two items of data fed to it, the tap delay line combines the rough and fine delay times, producing the desired delay time. The delay line is then reset with a flip-flop and a phase detector such that the edges of the output signal having the finely adjusted edge and the edge of the timing signal are aligned with one another. The result of the calibration process is stored in the RAM and the register. It is, thus, possible to execute a self-test of the circuit during the production test process by way of the calibration process.
In addition, U.S. Pat. No. 5,621,739 to Sine et al. discloses a buffer circuit having a delay chain with an adjustable delay. The delay chain is made of a series circuit composed of inverters.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a configuration for generating signal impulses of defined lengths in a module with a BIST-function that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and that improves the configuration such that it is able to generate the signal impulses of defined lengths on the module itself. Therefore, the configuration has a simple construction.
With the foregoing and other objects in view, in a module with a BIST function to which signal pulses are fed from outside with a tester there is provided, in accordance with the invention, a configuration for generating signal impulses of defined lengths including registers configured to store measured pulse lengths, and a variable delay element configured to measure pulse lengths of externally supplied signal pulses in a training phase, the variable delay element having a series circuit of inverters and delay-free signal paths parallel to the inverters for writing into the registers and reading out from the registers.
In accordance with another feature of the invention, the delay-free signal paths include a delay-free write signal path, a decoder and AND gates having outputs are included. The AND gates are disposed between the delay-free write signal path and the variable delay element and behind an even number of respective inverters, and the output of the AND gates are connected to the registers through the decoder.
In accordance with a concomitant feature of the invention, the delay-free signal paths include a delay-free read signal path, and a decoder and AND gates having inputs and outputs are included. The AND gates are disposed between the delay-free read signal path and the variable delay element and behind an even number of respective inverters. One input of each of the AND gates is connected to the registers through the decoder, another input of the AND gates is connected to the variable delay element, and the outputs of the AND gates are connected to the delay-free read signal path.
The invention makes possible the delivery of signal impulses of defined lengths—that is to say, the delivery of separate time values—in a surprisingly simple manner: at the beginning of a test, the external tester initially feeds the required signal impulses of defined lengths to the module (i.e., the DUT). From these signal impulses, the module measures a first time interval in its own variable delay element and stores the result in a corresponding register. The action then occurs for all required defined pulse lengths, i.e., for Trcd, Tas, and so on. All in all, the process requires as many registers as defined pulse lengths.
The module can then independently generate the required and defined pulse lengths as needed for calibration purposes and for measuring out signal transit times, without requiring the tester again. But it is also possible for the module to measure out signal transit times itself and then to transmit them to the tester in analog or digital form.
The configuration of the invention makes possible a number of advantages that cannot be achieved with existing configurations in which signal impulses of defined lengths are delivered by external testers alone.
External testers need to apply each signal impulse of defined length only once. To calibrate the configuration, tester channels can be spared because a maximum of two pins are needed to accomplish the calibration, through which all defined pulse lengths (i.e., separate time values) can be applied by the external tester. Once saved, the pulse lengths (i.e., the times) can be stored on the module until the next test run and then reproduced without further ado. Faulty measurements due to variations in technology or processing that occur in the production of different testers and modules are practically non-existent. Only one variable delay element is needed on the module itself as reference measure and for the measuring procedure. The element is also used for all measurements of the various definite pulse lengths, i.e., separate time values. Using the registers, the module can store the different definite pulse lengths (i.e., separate time values) without further ado and can potentially even output them to the external tester as needed.
Essential to the present invention is, first, the use of only one variable delay element that measures the pulse lengths, i.e., times, that have been impressed in the module by the external tester or that measures out internally generated pulse lengths (i.e., times), and that stores the results in the respective registers. Conversely, the desired time interval can be reproduced again on the module itself using the variable delay element and the corresponding register value. The variable delay element is inventively realized using inverter transit times. The dimensioning of the individual inverters, for example, is dependent upon the smallest desired resolution: the more inverters with short transit times that are used, the higher the time resolution will be. A variable delay element of a “mixed” construction may also be advantageous when large time intervals
Kaiser Robert
Krasser Hans-Jürgen
Schamberger Florian
Schneider Helmut
Britt Cynthia
De'cady Albert
Greenberg Laurence A.
Infineon - Technologies AG
Mayback Gregory L.
LandOfFree
Configuration for generating signal impulses of defined... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Configuration for generating signal impulses of defined..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Configuration for generating signal impulses of defined... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3234499