Carousel wafer transfer system

Coating apparatus – Gas or vapor deposition – Multizone chamber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S724000, C204S298250, C204S298350, C414S217000, C414S222020, C414S223020, C414S225010, C414S331090, C414S332000, C414S403000, C414S564000, C414S749200, C414S805000, C414S806000, C414S935000, C414S937000, C414S939000, C414S941000

Reexamination Certificate

active

06287386

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to integrated circuit processing equipment, and more particularly, to a wafer handling module for transferring wafers through a processing system with high throughput.
BACKGROUND OF THE RELATED ART
Cluster tools are commonly used in the fabrication of integrated circuits. Cluster tools typically include a loadlock chamber for introducing wafers into the system, a central transfer chamber for moving wafers between the loadlock chamber, one or more process chambers and one or more cooldown chambers mounted on the transfer chamber. Typically, either a single blade or a double blade robot is located in the transfer chamber to move wafers between the loadlock chamber, the processing chamber(s), the cooldown chamber(s) and then back into the loadlock chamber. Exemplary cluster tools, robots and wafer handling methods are described in U.S. Pat. Nos. 4,951,601 and 5,292,393, both of which are incorporated herein by reference.
The use of robot arms is a well established manufacturing expedient in applications where human handling is inefficient and/or undesired. For example, robot arms are used in the semiconductor arts to handle wafers between various process steps. Such process steps include those which occur in a reaction chamber, e.g. etching, deposition, passivation, etc., where a sealed environment must be maintained to limit the likelihood of contamination and to ensure that various specific processing conditions are provided.
Current practice includes the use of robot arms to load semiconductor wafers from a loading port into various processing ports within a multiple chamber reaction system. The robot arm is then employed to retrieve the wafer from a particular port after processing within an associated process chamber. The wafer is then shuttled by the robot arm to a cooldown chamber and then a next port for additional processing or back into the loadlock chamber. When all processing within the reaction system is complete, the robot arm returns the semiconductor wafer to the loading port and a next wafer is placed into the system by the robot arm for processing. Typically, a stack of several semiconductor wafers is handled in this manner during each process run.
In multiple chamber reaction systems, it is desirable to have more than one semiconductor wafer in process at a time. In this way, the reaction system is used to obtain maximum throughput. In the art, a robot arm used in a reaction system must store one wafer, fetch and place another wafer, and then fetch and place the stored wafer. Although this improves use of the reaction system and provides improved throughput, the robot arm itself must go through significant repetitive motion. One exemplary
One way to overcome the inefficiency attendant with such wasted motion is to provide a robot arm having the ability to handle two wafers at the same time. Thus, some equipment manufacturers have provided a robot arm in which the two carrier blades are rotated about a pivot point at the robot wrist by a motor with a belt drive at the end of the arm. In this way, one wafer may be stored on one carrier while the other carrier is used to fetch and place a second wafer. The carriers are then rotated and the previously stored wafer may be placed as desired. Such a mechanism is rather complex and requires a massive arm assembly to support the weight of a carrier drive located at the end of an extendible robot arm. For example, three drives are usually required for a system incorporating such a robot arm: one drive to rotate the arm, one drive to extend the arm, and one drive to rotate the carriers. Thus, any improvement in throughput as is provided by such a multiple carrier robot arm comes at a price of increase cost of manufacture, increased weight and power consumption, and increased complexity and, thus, reduced reliability and serviceability.
Another approach to providing a multiple carrier robot arm is to place two robot arms coaxially about a common pivot point. Each such robot arm operates independently of the other and improved throughput can be obtained through the increased handling capacity of the system, i.e. two arms are better than one. However, it is not simple to provide two robot arms for independent operation about a common axis. Thus, multiple drives and rigid shafts must be provided, again increasing the cost of manufacture and complexity while reducing reliability.
The various processes which are performed on the various wafers, may involve different time periods with which to perform the process. Therefore, some wafers may remain in a chamber for a short period of time after processing is completed before they are moved into a subsequent process chamber because a wafer is still being processed in the process chamber to which it is to be moved. This causes a backup of wafers which can cause a decrease in throughput of wafers in the system.
In addition to varying process times, another factor which must be considered is the time needed to cool down individual wafers following processing. Typically, along with process chambers, one or more cool down chambers are positioned adjacent to or mounted on the transfer chamber. Wafers are periodically moved into a cool down chamber to enable wafer cooling following processing. In addition, most wafers visit the cool down chamber before they are moved back into the loadlock chamber and removed from the system. As a result, the wafer robot must move wafers into and out of a cool down chamber which adds to the number of movements a robot must make in order to process a number of wafers. Additionally, incorporation of one or more cooldown chambers occupies positions on the transfer chamber where a process chamber could be positioned. Fewer process chambers can result in lower throughput of the system and increases the cost of each wafer processed.
Therefore, there remains a need for a wafer handling module which can increase throughput of wafers while also providing a station in which wafers can be cooled. It would be desirable if the wafer handling module could be used in presently available transfer chambers and systems so that the systems need not be redesigned.
SUMMARY OF THE INVENTION
The present invention provides an apparatus for use in semiconductor processing equipment, comprising a movable substrate carriage having one or more substrate storage positions, a substrate handler disposed adjacent the movable substrate carriage and having one or more blades to hold a substrate, a first actuator coupled to the movable substrate carriage, and one or more actuators coupled to the substrate handler. The first actuator may impart rotation and/or vertical motion to the movable substrate carriage. Preferably, the first actuator imparts both rotation and vertical motion to the movable substrate carriage and can raise the movable substrate carriage above a first plane in which the substrate handler operates and lower the movable substrate carriage below the first plane. Each substrate storage position preferably comprises a pair of opposing wafer seats having a passage therebetween. The passage should be wider than the substrate handler blade to allow movement therebetween.
The movable substrate carriage is preferably a rotary carousel disposed through the lid in a transfer chamber and the substrate handler is preferably a robot assembly which is disposed through the bottom of the transfer chamber. The rotary carousel and the robot cooperate to locate wafers adjacent to process chambers and move wafers into and out of various chambers of the system. The invention improves the throughput of the processing system by positioning wafers adjacent to the appropriate chamber to reduce the amount of movement required of the robot for transporting wafers between chambers and by providing a cooling station where wafers can be stored without requiring significant robot motion.


REFERENCES:
patent: 4664578 (1987-05-01), Kakehi
patent: 4776744 (1988-10-01), Stonestreet et al.
patent: 4944650 (1990-07-01), Matsumoto
patent: 4951601 (1990-0

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Carousel wafer transfer system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Carousel wafer transfer system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carousel wafer transfer system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2497003

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.