Semiconductor device manufacturing: process – Coating of substrate containing semiconductor region or of... – Insulative material deposited upon semiconductive substrate
Reexamination Certificate
2002-02-12
2003-05-20
Elms, Richard (Department: 2824)
Semiconductor device manufacturing: process
Coating of substrate containing semiconductor region or of...
Insulative material deposited upon semiconductive substrate
C438S792000
Reexamination Certificate
active
06566283
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to treating a low dielectric constant layer suitable for use in semiconductor devices. The present invention has particular applicability to the formation of interlevel dielectric layers in multilevel semiconductor devices.
BACKGROUND OF THE INVENTION
The escalating requirements for high density and performance associated with ultra-large scale integration semiconductor devices necessitate design features of 0.18 micron and under, increased transistor and circuit speeds, high reliability, and increased manufacturing throughput. The reduction of design features to 0.18 micron and under challenges the limitations of conventional interconnection technology, such as the electrical isolation properties of interlevel dielectric (ILD) materials.
A problem encountered in highly miniaturized semiconductor devices employing multiple levels and reduced interwiring spacings in both the horizontal and vertical dimensions is related to the resistance-capacitance (RC) time constant of the system. Although semiconductor devices are presently being scaled in the horizontal dimension, they are not generally scaled in the vertical dimension, since scaling in both dimensions would lead to a higher current density that could exceed reliability limits. Horizontal scaling, however, requires conductive lines having a high aspect ratio, i.e., ratios of conductor height to conductor width greater than one, e.g., three or four, along with reduced interwiring spacings. As a consequence, capacitive coupling between conductive lines becomes a significant limitation on circuit speed. If intrametal capacitance is high, electrical inefficiencies and inaccuracies increase. It has been recognized that a reduction in capacitance within multi-level system will reduce the RC time constant between the conductive lines.
The drive towards increased miniaturization and the resultant increase in the RC time constant have served as an impetus for the development of newer, low dielectric constant (“low k”) materials as substitutes for conventional higher dielectric constant silicon oxide-based ILD materials. However, such dielectric materials must be able to serve a number of different purposes requiring diverse characteristics and attributes. For example, the ILD material must form adherent films that: prevent unwanted shorting of neighboring conductors or conducting levels by acting as a rigid, insulating spacer; prevent corrosion and/or oxidation of metal conductors, by acting as a barrier to moisture and mobile ions; fill deep, narrow gaps between closely spaced conductors; and undergo planarization of uneven surface topography so that a relatively flat level of conductors can be reliably deposited thereon. Another, and important consideration in regard to RC time constant effects, is that such dielectric films used as ILD materials must have a low dielectric constant, as compared to the value of 4.1 to 3.9 for a conventionally employed silicon dioxide (SiO
2
) layer, in order to reduce the RC time constant, lower power consumption, reduce crosstalk, and reduce signal delay in closely spaced conductors.
Silicon oxide has found the widest application as ILD layers in multilevel interconnect technology partly because of the familiarity and varied methods for depositing silicon oxide layers pervasive in semiconductor manufacturing processes. Silicon oxide as ILD layers can be deposited by any number of processes, including chemical vapor deposition (CVD), plasma enhanced CVD and liquid spin-on glass forming techniques, tailored to achieving high-quality ILDs characterized by good electrical and physical properties.
Increasing attention has focused on the use of porous dielectrics, such as porous silicon dioxides and silicon oxides prepared from silsesquioxanes, sol-gels, or some other form of silicon oxide or porous organics to provide a low dielectric layer for ILDs. These materials are particularly attractive due their low dielectric properties resulting from increased use of hydrocarbon substituents and/or porosity. Often these low dielectric materials require a capping layer composed of an additional dielectric material to protect and enhance the insulative properties of the low dielectric layer.
A conventional approach in forming ILDs involves initially depositing two dielectric layers. A first dielectric gap fill layer, e.g., spin-on-glass (SOG), silicon dioxide, or other low k material, is deposited on a substrate having features therein or thereon and then a second dielectric layer, referred to as a “cap layer,” is deposited on the low k material. The cap layer is then planarized (leveled), as by a chemical-mechanical polishing (CMP), to provide a substantially flat upper surface on which additional layers are formed. Another conventional approach to forming ILDs involves a damascene process where a layer of oxide is deposited on a substrate followed by patterning and etching the deposited oxide to form features therein, such as a trench or via. A barrier metal layer, copper seed layer and copper layer can then be sequentially deposited in to the etched features, i.e. in to the etched trench or via. Excess copper as well as barrier material can then be removed as by chemical mechanical polishing resulting in a conductive metal feature isolated by the dielectric materials.
Forming composite dielectric layers, however, creates additional difficulties in the employment of low k materials. For example, it has been observed that, under certain circumstances, the added protective capping layer can delaminate from a low k layer. Additionally, it has been observed that applying the capping layer by conventional plasma deposition techniques can cause an underlying low k layer, particularly a porous dielectric underlayer, to degrade due to the oxidation attendant during the formation of the capping layer. The degradation is due to bond breaking and loss of hydrogen and/or methyl groups contained in such materials when oxygen or oxygen radicals react with the surface of an underlying low k layer.
Thus, there exists a need for utilizing current techniques of forming ILD layers having low dielectric constants that have improved surface properties for improved adhesion to subsequently formed layers thereon and improved resistance to decomposition, particularly as employed in the manufacture of ultra large scale integration semiconductor devices having multiple levels.
DISCLOSURE OF THE INVENTION
An advantage of the present invention is a semiconductor device having a low k material with improved surface properties including resistance to degradation and improved adhesion to subsequently applied layers thereon.
Additional advantages, and other features of the present invention will be set forth in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from the practice of the present invention. The advantages may be realized and obtained as particularly pointed out in the appended claims.
According to the present invention, the foregoing and other advantages are achieved in part by a method of forming a composite dielectric on a semiconductor substrate. The composite dielectric comprises a first dielectric, e.g. a low k dielectric such as a porous silicon oxide, and a cap layer over the low k dielectric. The method comprises: forming a dielectric layer having an exposed surface on the substrate; subjecting the dielectric layer to silane and heat and/or a silane generated plasma to treat the exposed surface thereof; and forming a cap layer directly on the treated surface of the dielectric layer.
The present method provides for introducing the substrate to a plasma enhanced chemical vapor deposition (PECVD) chamber having a silane source to subject the upper surface of the dielectric layer to the silane gas followed by striking a silane plasma and forming the cap layer by PECVD. Advantageously, the present invention contemplates that the silane plasma treatment and cap format
Hopper Dawn
Ngo Minh Van
Pangrle Suzette K.
You Lu
Advanced Micro Devices , Inc.
Owens Beth E.
LandOfFree
Silane treatment of low dielectric constant materials in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Silane treatment of low dielectric constant materials in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Silane treatment of low dielectric constant materials in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3090555