System and method for synchronizing data transfer from one...

Electrical computers and digital processing systems: support – Synchronization of clock or timing signals – data – or pulses

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S400000

Reexamination Certificate

active

06799280

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention is directed, in general, to microprocessors and, more specifically, to synchronization circuits for transferring data between two different clock domains in a processing device.
BACKGROUND OF THE INVENTION
The ever-growing requirement for high performance computers demands that state-of-the-art microprocessors execute instructions in the minimum amount of time. Over the years, efforts to increase microprocessor speeds have followed different approaches, including increasing the speed of the clock that drives the processor and reducing the number of clock cycles required to perform a given instruction.
Microprocessor speeds may also be increased by reducing the number of gate delays incurred while executing an instruction. Under this approach, the microprocessor is designed so that each data bit or control signal propagates through the least number of gates needed to perform an instruction. Additionally, the propagation delay through each individual gate is also minimized in order to further reduce the end-to-end propagation delay associated with transmitting a control signal or a data bit during the execution of an instruction.
One area where it is important to minimize propagation delays occurs at the interface between clock domains. Conventional microprocessors contain many clock signals that are derived from a basic high-frequency core clock. The core clock signal may be divided down to produce clock signals that are related, for example, by an N:1 ratio or by an (N+2):1 ratio. For instance, dividing the core clock by two and dividing the core clock by four yields two clock signals that are in a 2:1 ratio. Similarly, dividing the core clock by two and dividing the core clock by seven yields two clock signals that are in a 3.5:1 ratio.
At the interface between two clock domains, there is no guarantee that a signal transmitted from a first clock domain will be synchronized with the clock in a second clock domain. Normally, synchronization between different clock domains is handled by a set of synchronizing flip-flops. A signal in a first clock domain is first registered in a flip-flop in the first clock domain. The output of that first flip-flop is then Adouble sampled@ by two flip-flops in the second clock domain. Double sampling means that the output of the first flip-flop feeds the input of a second flip-flop clocked in the second clock domain. The output of the second flip-flop feeds the input of a third flip-flop that also is clocked in the second clock domain. The output of this third flip-flop is properly synchronized with the second clock domain. An identical three flip-flop interface circuit is used to synchronize signals that are being transmitted in the reverse direction (i.e., from the second clock domain to the first clock domain). This synchronizing circuit along with grey code encoding of multi-bit signals provides a means for synchronizing two asynchronous clock domains.
The chief drawback of the above-described flip-flop interface circuit is the fact that there are three gate propagation delays involved in transmitting a signal from one clock domain to another clock domain. This necessarily slows down the operation of the microprocessor, since the circuits in the receiving domain receive the transmitted signal only after at least three propagation delays.
Therefore, there is a need in the art for improved microprocessor designs that maximize processor throughput. In particular, there is a need in the art for improved circuits that interface signals between different clock domains. More particularly, there is a need for interface circuits that minimize the number of gate delays that affect a signal being transmitted from a faster clock domain to a slower clock domain, and vice versa.
SUMMARY OF THE INVENTION
The limitations inherent in the prior art described above are overcome by the present invention, which provides an interface circuit for synchronizing the transfer of data from a first clock domain driven by a first clock signal to a second clock domain driven by a second clock signal. In an advantageous embodiment of the present invention, the interface circuit comprises 1) a flip-flop having a data input for receiving a first data signal from the first clock domain, a clock input for receiving the first clock signal, and an output; 2) a latch having a data input coupled to the flip-flop output, a clock input for receiving a gating signal, and an output; and 3) a multiplexer having a first data input coupled to the flip-flop output, a second data input coupled to the latch output, and a selector input for selecting one of the first data input and the second data input for transfer to an output of the multiplexer.
In one embodiment of the present invention, the second clock signal and the first clock signal are derived from a common core clock.
In another embodiment of the present invention, a frequency of the second clock signal and a frequency of the first clock signal are in a ratio of N:1 where N is an integer.
In still another embodiment of the present invention, a frequency of the second clock signal and a frequency of the first clock signal are in a ratio of (N+2):1 where N is an integer.
In yet another embodiment of the present invention, a selection signal applied to the selector input selects the first data input of the multiplexer when a rising edge of the first clock signal is approximately in phase with a rising edge of the second clock signal.
In a further embodiment of the present invention, the selection signal is applied to the selector input during one clock period of the first clock signal.
In a still further embodiment of the present invention, the gating signal is applied. to the latch clock input when the selection signal is applied to the selector input and during a low phase of the first clock signal.
In a yet further embodiment of the present invention, the interface circuit further comprises a second interface circuit for synchronizing the transfer of data from the second clock domain to the first clock domain, wherein the second interface circuit comprises: 1) a flip-flop having a data input for receiving a first data signal from the second clock domain, a clock input for receiving the second clock signal, and an output; 2) a latch having a data input coupled to the flip-flop output, a clock input for receiving the first clock signal, and an output; and 3) a multiplexer having a first data input coupled to the flip-flop output, a second data input coupled to the latch output, and a selector input for selecting one of the first data input and the second data input for transfer to an output of the multiplexer.
The foregoing has outlined rather broadly the features and technical advantages of the present invention so that those skilled in the art may better understand the detailed description of the invention that follows. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art should appreciate that they may readily use the conception and the specific embodiment disclosed as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the invention in its broadest form.
Before undertaking the DETAILED DESCRIPTION, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, h

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for synchronizing data transfer from one... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for synchronizing data transfer from one..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for synchronizing data transfer from one... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3256611

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.