Method of controlling bond process quality by measuring wire...

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S141000, C382S145000, C382S146000, C382S152000

Reexamination Certificate

active

06789240

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related in general to the field of semiconductor devices and electronic systems and more specifically to an automated system for accurate ball feature measurements in computer-controlled bonding machines used in integrated circuit assembly.
DESCRIPTION OF THE RELATED ART
In integrated circuit (IC) assembly, an IC chip is typically mounted on a leadframe and electrically connected to it by metallic segments. Commonly, the chip assembly, is encapsulated in a protective package (for instance, ceramic package, or plastic package using molding process) Typically, the IC chip has a plurality of bond pads, which are often positioned around the chip perimeter; these bond pads have predetermined bonding area and spacing (bond pad pitch). The leadframe usually has a plurality of narrow “inner” leads for attachment to the segments and inclusion in the package, and a plurality of wider “outer” leads for attachment to other parts such as solder attachment to circuit boards.
The metallic segments used for electrical connection of the IC chip to the leadframe include wires and ribbons, and are attached by ball bonding, stitch bonding, or wedge bonding techniques. Wire bonding is a process in which a wire may be welded from a chip bond pad to the tip of an inner lead of the leadframe. As an example, in wire ball bonding the ball is attached to the chip bond pad and the stitch to the leadframe inner lead. For a given device type, there is a set of locations expressed in x and y coordinates which defines the bond locations on the chip and on the lead tips. These locations are generally stored collectively in a computer file, sometimes referred to as “Device Program”. Apart from the bond head, capable of providing x-y-z motion needed for bonding, a wire bonder has a material handling subsystem and the vision subsystem.
Conventional semiconductor computerized wire bonders use x-y tables to move the bonding capillary over the device for bonding between the chip and the leadframe. The x-y coordinate tables are driven by complex electrical and mechanical components that may convert rotary and linear motions of the axis drive motors to create the needed positioning. The bond head also carries several other components such as the z-axis drive motor, a camera and optics for vision functions, and further components required to control wire bonding. Specific features of the capillary and its alignment are described in a number of U.S. patents and patent applications. Examples are: U.S. Pat. No. 5,934,543, issued on Aug. 10, 1999 (Koduri et al., “Wire Bonding Capillary having Alignment Features”); and application Ser. No. 08/993,638, filed on Dec. 18, 1997 (Koduri, “Wire Bonding with Capillary Realignment”). The interaction of capillary and vision system is illustrated, for example, by U.S. patent application Ser. No. 09/191,812, filed on Nov. 13, 1998 (Koduri et al., “Automation of Optics Offset Measurement on Wire Bonders”); Ser. No. 09/111,642, filed on Jul. 8, 1998 (Koduri et al., “An Efficient Hybrid Illuminator”); Ser. No. 09/111,977, filed on Jul. 8, 1998 (Koduri et al., “An Efficient Illumination System for Wire Bonders”).
When a unit is indexed in by the material handling system for bonding, the position of the leadframe and the chip is not always the same because of variations in the handling and previous manufacturing (such as variable chip positioning during attachment to the leadframe). Without knowing accurately the target bonding locations, the bond head cannot place the bonds as expected. To aid this process, a machine vision system is employed. A typical vision system consists of a set of optics to provide the needed illumination and magnification of the device, a camera to capture the image provided by the optics and an image processing system to store and analyze the captured image.
Before bonding a device, it is essential to determine the device program with all the coordinate locations of the bonds that need to be created. With respect to a predetermined set of reference locations, those locations are often referred to as “homes”. A typical device may have one or more “homes”. Generally, the identification of homes needs to be done individually for each device to be bonded. It is common practice to use a three-step process to enable such identification.
In the step of “teaching”, the coordinate locations of the homes and all the needed bonds are identified and saved to create the “device program”. Once generated, a device program can be stored, copied and/or shared between multiple machines as needed.
In the step of “regeneration” or “retrieving”, a human operator helps in locating the homes of the first device after loading in the information from the previously saved device program. At this point, the machine captures and saves a set of images, called “reference images” or “references” in the neighborhood of each home.
In the step of “bonding”, the machine indexes one unit or more at a time into the workstation under the bond head. At this point, the vision system, with the aid of a pattern recognition system, attempts to relocate the matching locations with the saved references. After finding the new coordinates of the matching references, the home and bond locations are re-computed for that specific unit from the device program data. The process of relocating the references and homes is normally referred to as “aligning” the device. Using the specific bond locations, the device can now be bonded. The process of indexing, aligning and bonding is repeated without any human intervention as long as nothing abnormal happens on the machine.
Problems in wire bonding techniques arise in part from the technology trends to increase the number of leads in a given package and to make IC chip packages smaller. As consequences, the bonding pads located on the chip receive smaller areas and are spaced closer together, and the inner leads of leadframes are made narrower and closer together. These trends demand tighter control of wire bond ball and stitch geometries and placements. For instance, even small bond placement errors may result in device loss.
For the bond machines, errors in x-y tables and motors need to be reduced. At the microscopic level, the shape of free air balls and the precision of forming nail-head “ball”-attachments need to be controlled such that uniform reproducibility can be guaranteed. These controls for forming and attaching wire “balls” determine to a great extent the quality of the bonding process.
The emerging technical problems for automated bond machines can be summarized as follows:
Accuracy: Small ball/fine pitch bonding requires a very accurate system to be able to place the ball completely on the bond pad. The current systems have difficulties in achieving this.
Large variations in illumination settings can lead to variations of the images as seen by the optics and the camera.
The current systems cannot handle x-y table inconsistencies. For small pad/fine pitch bonding, a small error in ball placement can cause the ball to be partially off the pad.
Human error during regeneration of alignment program: Ball placement is greatly affected by the accuracy of the alignment program. There are many steps to this regeneration process end thus there are many chances for human error.
Time spent performing alignment regeneration: Whenever a device is to be bonded, a human operator typically has to spend a finite amount of time to perform an alignment regeneration.
U.S. Patent Application No. 60/201,910, filed on May 4, 2000 (Koduri et al., “System and Method to Reduce Bond Program Errors of Integrated Circuit Bonders”), No. 60/204,997, filed on May 16, 2000 (Bon et al., “System and Method to Customize Bond Programs Compensating Integrated Circuit Bonder Variability”), and No. 60/206,493, filed on May, 23, 2000 (Koduri et al., “System and Method to Recreate Illumination Conditions on Integrated Circuit Bonders”) describe methods how a network of relationships between reference images, bond locations, and illumination conditio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of controlling bond process quality by measuring wire... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of controlling bond process quality by measuring wire..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of controlling bond process quality by measuring wire... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3221633

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.