Switched uniformity control

Adhesive bonding and miscellaneous chemical manufacture – Differential fluid etching apparatus – With gas inlet structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S345340, C156S345480, C118S715000, C118S7230AN, C118S7230IR

Reexamination Certificate

active

06632322

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to apparatus and methods for processing substrates such as semiconductor substrates for use in IC fabrication or glass panels for use in flat panel display applications. More particularly, the present invention relates to improved processing systems that are capable of processing substrates with a high degree of processing uniformity across the substrate surface.
During the manufacture of a semiconductor-based product, for example, a flat panel display or an integrated circuit, multiple deposition and/or etching steps may be employed on the surface of a substrate to form devices such as transistors, capacitors, resistors, interconnects and the like. During deposition, successive layers of various materials are deposited on the surface of the substrate to form a layer stack. For example, layers of insulator, conductor and semiconductor may be formed on the surface of the substrate. Conversely, etching may be employed to selectively remove materials from predefined areas of the substrate, and more particularly the layer stack. For example, etched features such as vias, contacts, or trenches may be formed in the layers of the substrate.
Etching and depositing processes and their associated reactors have been around for some time. For example, deposition processes including chemical vapor deposition (CVD), thermal CVD, plasma enhanced chemical vapor deposition (PECVD), physical vapor deposition (PVD) such as sputtering and the like, as well as, etching processes including those adapted for dry etching, plasma etching, reactive etching (RIE), magnetically enhanced reactive ion etching (MERIE), electron cyclotron resonance (ECR), and the like, have been introduced and employed to various degrees to process semiconductor substrates and display panels.
In processing substrates, one of the most important parameters that engineers strive to improve is process uniformity. In the etch environment, for example, etch uniformity is an important determinant of uniform device performance and device yield, i.e., a high level of etch uniformity tends to improve the percentage of defect-free processed substrates, which translates into lower cost for the manufacturer. As the term is employed herein, etch uniformity refers to the uniformity of the entire etch process across the substrate surface including etch rate, microloading, mask selectivity, underlayer selectivity, critical dimension control, and profile characteristics like sidewall angle and roughness. If the etch is highly uniform, for example, it is expected that etch rates at different points on the substrate tend to be substantially equal. In this case, it is less likely that one area of the substrate will be unduly over-etched while other areas remain inadequately etched. Although not specifically described, it should be understood that deposition uniformity is similar to etch uniformity in that it is also an important determinant of uniform device performance and device yield.
In addition, in many applications these stringent processing requirements may be contradictory at different stages during the substrate processing. Often this is due to the presence of multiple layers that must be processed with dramatically different processing requirements. For example, etch recipes including power, temperature, pressure, gas chemistry, and gas flow may be required to dramatically change while processing a single substrate to achieve the desired processing performance. Furthermore, because of the nature of the processes, material may accumulate on surrounding surfaces, i.e., chamber walls, and as a result the process may drift.
In addition to processing uniformity, there also exist other issues of concern to the semiconductor industry. Among the important issues to manufacturers is the cost of ownership of the processing tool, which includes, for example, the cost of acquiring and maintaining the system, the frequency of chamber cleaning required to maintain an acceptable level of processing performance, the longevity of the system components and the like. Thus a desirable process is often one that strikes the right balance between the different cost-of-ownership and process parameters in such a way that results in a higher quality process at a lower cost. Further, as the features on the substrate become smaller and the process becomes more demanding (e.g., smaller critical dimensions, higher aspect ratios, faster throughput, and the like), process engineers are constantly searching for new methods and apparatuses to achieve higher quality processing results at lower costs.
In view of the foregoing, there are desired improved techniques for producing uniform processing at the surface of the substrate.
SUMMARY OF THE INVENTION
The invention relates, in one embodiment, to a component delivery mechanism for distributing a component inside a process chamber. The component is used to process a work piece within the process chamber. The component delivery mechanism includes a plurality of component outputs for outputting the component to a desired region of the process chamber. The component delivery mechanism further includes a spatial distribution switch coupled to the plurality of component outputs. The spatial distribution switch is arranged for directing the component to at least one of the plurality of component outputs. The component delivery mechanism also includes a single component source coupled to the spatial distribution switch. The single component source is arranged for supplying the component to the spatial distribution switch.
The invention relates, in another embodiment, to a method for processing a work piece with a component of a process recipe. The method includes providing a process chamber within which the work piece is processed, and which includes at least a first processing zone and a second processing zone. Each zone represents a portion of the work piece to be processed. The method further includes outputting the component into the first processing zone of the process chamber. The method additionally includes switching from the first processing zone to the second processing zone. The method also includes outputting the component into the second processing zone of the process chamber.
The invention relates, in another embodiment, to a spatially controlled plasma reactor for processing a substrate. The reactor includes a process chamber within which a plasma is both ignited and sustained for the processing. The reactor further includes a power delivery mechanism having a single power source and an electrode coupled to the power source through a power distribution switch. The single power source is for generating energy sufficiently strong to ignite and sustain the plasma. The electrode includes a first coil and a second coil. The first coil is arranged to produce an electric field inside a first power region of the process chamber and the second coil is arranged to produce an electric field inside a second power region of the process chamber. Furthermore, the power distribution switch is arranged for directing the energy of the power source between the inner and outer coils. The reactor additionally includes a gas delivery mechanism having a single gas source, a first gas injection port, a second gas injection port and a gas distribution switch. The single gas source is for generating a process gas, which is used in part to form the plasma and to process the substrate. The first gas injection port is coupled to the gas source through the gas distribution switch, and is arranged to release the process gas into a first gas region of the process chamber. The second gas injection port is also coupled to the gas source through the gas distribution switch, and is arranged to release the process gas into a second gas region of the process chamber. Furthermore, the gas distribution switch is arranged for directing the process gas of the gas source between the inner and outer gas injection ports.
The invention relates, in another embodiment, to a component delivery mechanism

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Switched uniformity control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Switched uniformity control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Switched uniformity control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3164514

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.