Method for forming a metal capacitor in a damascene process

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S396000, C438S303000

Reexamination Certificate

active

06492226

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to the formatior of an integrated circuit including capacitors. In particular, the present invention relates to a method for forming a metal capacitor in a damascene process.
2. Description of the Related Art
Capacitors are deployed in various integrated circuits. For example, decoupling capacitors provide improved voltage regulation and noise immunity for power distribution. Capacitors also have wide applications in analog/logic, analog-to-digital, mixed signal, radio frequency circuit operations, and others.
A conventional method of manufacturing a semiconductor apparatus including a capacitor
20
that is formed of metal-insulator-metal layers is described with reference to FIGS.
1
A~
1
D. As shown in
FIG. 1A
, an aluminum layer is deposited on an insulator
12
which contains interconnections and is formed on a silicon substrate having devices (not shown) thereon and therein. The aluminum layer is then patterned by masking and etching to form wires
14
a
and
14
b.
As shown in
FIG. 1B
, an insulator
16
with a tungsten plug
18
(hereafter “W-plug”) used to connect the aluminum wire
14
a
and the to-be-formed capacitor is formed on the aluminum wires
14
a
and
14
b
and the insulator
12
. As shown in
FIG. 1C
, a first conductive plate
21
, an insulator
22
and a second conductive plate
23
are sequentially deposited on the insulator
16
and the W-plug
18
, and then patterned by masking and etching to obtain a capacitor
20
. The first conductive plate
21
, the lower electrode, is connected with the aluminum wire
14
a
through the W-plug
18
. Another insulator
26
is deposited on the insulator
16
and the capacitor
20
. The insulators
16
and
26
are patterned and W-plug
28
a
and W-plug
28
b
are formed therein. As shown in
FIG. 1D
, an aluminum layer is deposited on the insulator
26
and the W-plugs
28
a
and
28
b.
The aluminum layer is then patterned by masking and etching to form wires
34
a
and
34
b.
The aluminum wire
34
a
is connected with the second conductive plate
23
through the W-plug
28
a.
The aluminum wire
34
b
is connected with the aluminum wire
14
b
through the W-plug
28
b.
The above-mentioned traditional processes for integrating the capacitor
20
into an integrated circuit require several masking and etching steps to form the capacitor
20
, which may increase overall fabrication costs.
As well, the aluminum used to fabricate the traditional interconnections cannot satisfy present-day requirements for enhanced integration and highly demanding speed of data transmission. Copper (Cu) has high electric conductivity tc reduce RC delay and can be substituted for the aluminum in the conducting wires. The use of copper in the conducting wires requires the use of processes, that is, damascene processes, because copper cannot be patterned by etching. This is because the boiling point of the copper chloride (CuCl
2
) produced by copper and the chlorine plasma usually used to etch metal is relatively high, about 1500° C.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method for forming a metal capacitor in a damascene process.
It is another object of the invention to reduce the number of masking and etching steps in manufacturing an integrated circuit including a capacitor.
Yet another object of the invention is to reduce the cost of manufacturing an integrated circuit including a capacitor.
Still another object of the invention is to provide easily controllable processes in manufacturing an integrated circuit including a capacitor.
Another object of the invention is to use the Cu processes to fabricate the integrated circuit including capacitors to reduce RC delay.
The present invention provides a method for forming a metal capacitor with a damascene process. Before fabricating the thin-film capacitor, a first Cu wire and a second Cu wire are prepared in a first insulator. A first sealing layer is formed on the first insulator and the first and second Cu wires. A second insulator and an anti-reflection layer are formed on the first sealing layer sequentially. The dual damascene structures including first and second Cu plugs and third and fourth Cu wires are formed in the anti-reflection layer, the second insulator and the first sealing layer, wherein the first Cu plug connects the third Cu wire and the first Cu wire, and the second Cu plug connects the fourth Cu wire and the second Cu wire. A third insulator and a metal layer are formed on the anti-reflection layer and the third and fourth Cu wires in turn. The metal layer and the third insulator are patterned by using the anti-reflection layer as an etching stop layer to form a upper electrode and a capacitor insulator corresponding to the third Cu wire. A fourth insulator is formed on the anti-reflector layer and the upper electrode. An additional dual damascene structures including third and fourth Cu plug and fifth and sixth Cu wires are formed in the fourth insulator, wherein the third Cu plug connects the fifth Cu wire and the upper electrode, and the fourth Cu plug connects the sixth Cu wire and the fourth Cu wire. A second sealing layer is formed, covering at least the fifth and sixth Cu wires.
The present invention provides another method for forming a metal capacitor with a damascene process. Before fabricating the thin-film capacitor, a first Cu wire and a second Cu wire are prepared in a first insulator. A first sealing layer is formed covering at least the first and second Cu wires. A second insulator and an anti-reflection layer are formed on the first sealing layer, sequentially. Dual damascene structures including first and second Cu plugs and third and fourth Cu wires are formed in the anti-reflection layer, the second insulator and the first sealing layer, wherein the first Cu plug connects the third Cu wire and the first Cu wire, and the second Cu plug connects the fourth Cu wire and the second Cu wire. A second sealing layer, a third insulator and a metal layer are formed on the anti-reflection layer and the third and fourth Cu wires sequentially. The metal layer and the third insulator are patterned using the second sealing layer as an etching stop layer to form a upper electrode and one part of a capacitor insulator corresponding to the third Cu wire, wherein the second sealing layer is the other part of the capacitor insulator. A fourth insulator is formed on the second sealing layer and the upper electrode. Additional dual damascene structures including third and fourth Cu plug and fifth and sixth Cu wires are formed in the fourth insulator and the second sealing layer, wherein the third Cu plug connects the fifth Cu wire and the upper electrode, and the fourth Cu plug connects the sixth Cu wire and the fourth Cu wire. A third sealing layer is formed at least on the fifth and sixth Cu wires.
These and other objects of the present invention will become readily apparent upon further review of the following specification and drawings.


REFERENCES:
patent: 6391713 (2002-05-01), Hsue et al.
patent: 6410386 (2002-06-01), Hsue et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for forming a metal capacitor in a damascene process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for forming a metal capacitor in a damascene process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming a metal capacitor in a damascene process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2957542

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.