Method of manufacturing a semiconductor device

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S301000, C438S306000, C257S408000

Reexamination Certificate

active

06281085

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to a method of manufacturing a semiconductor device, and more particularly to, a method of manufacturing a semiconductor device in which a facet phenomenon generated by a selective epitaxial growth (called SEG hereinafter) used in forming a Lightly Doped Drain (LDD) structure and an elevated source/drain structure of a semiconductor device is used, thus obtaining a junction region having a very shallow depth.
2. Description of the Prior Art
As a semiconductor device is highly integrated, the depth of a device junction becomes also shallow. Thus, in order to shallow the depth of the junction region, a method of lowering the amount of the energy when ion injection process is applied, is used. However, this method has the following problems that it could not obtain a sufficient beam current upon ion injection and it will increase the possibility of channeling in a low ion injection energy etc.
In order to solve these problems, a SEG method has been proposed, by which a gate electrode is formed on a semiconductor substrate and then a silicon layer is selectively formed only on source and drain regions so as to increase the height of the source and drain regions.
FIG. 1
is a sectional view of a device for illustrating a method of manufacturing a conventional semiconductor device.
First a semiconductor device
11
is thermally oxidized to form a gate oxide film
12
. Then a conductive layer
13
for use in a gate electrode and a first insulating film
14
are sequentially formed on the entire structure. Thereafter, a portion in which the gate electrode will be formed is defined by photolithography process and etching process. Then the first insulating film
14
and the conductive layer
13
are sequentially removed to form a gate electrode. Next, a LDD region
16
is formed by means of ion injection process using a low concentration impurity. Then, after forming a second insulating film
15
on the entire structure a blanket etching is performed to form spacers on both sides of the gate electrode. Thereafter, in order to form an elevated source/drain structure, a SEG process is performed to form a SEG layer
17
. Finally, a high concentration ion injection process is performed to form a junction region
18
.
In case of the method of forming a LDD structure of a semiconductor device as explained above as SEG process is performed after ion injection process for forming the LDD region
16
is performed, it could not solve the above mentioned problems that it could not obtain a sufficient beam current upon ion injection process and that it may increase the possibility of channeling in a low energy. Further, due to inherent SEG process, there are problems that a facet phenomenon (marked A) is occurred at the edge portion of the gate electrode and that the depth of junction is partially deepened (marked
13
) at the place (marked A) where the facet phenomenon was occurred upon ion injection process for forming a subsequent junction regions
18
. As the facet phenomenon occurs at the edge portion of the gate electrode, it is difficult to form a LDD structure in which the junction depth at the edge portion of the gate electrode is shallow and that at the other region of the gate electrode is deep.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a method of manufacturing a semiconductor device in which, after a gate electrode and a junction region are sequentially formed, a SEG layer is formed and then a facet phenomenon of the SEG layer is used to form a LDD region, thus shallowly controlling the depth of the LDD region and the junction region and increasing the integration degree of the device.
In order to accomplish the above mentioned object, a method of manufacturing a semiconductor device is characterized in that it comprises the steps of forming a gate electrode consisted of a gate oxide film, a conductive layer and a first insulating film, thermal processing it under oxidization atmosphere, and forming a thermal oxide film on the upper portion of the gate oxide film and at the sidewalls of the conductive layer; forming a second insulating film on the entire structure and performing a blanket etching process to form a first insulating film spacer at the sidewalls of the gate electrode, and forming a third insulating film on the entire structure in which the first insulating film spacer is formed and performing a blanket etching process to form a second insulating film spacer at the sidewalls of the first insulating film spacer: performing a high concentration ion injection process using the gate electrode, the first insulating film spacer and the second insulating film spacer as a mask, thus forming a junction region; performing a cleaning process to remove the second insulating film spacer; performing a selective epitaxial growth method to form a selective epitaxial growth layer on the exposed semiconductor device; and performing a low concentration ion injection process to form a LDD region.


REFERENCES:
patent: 4728623 (1988-03-01), Lu et al.
patent: 4738937 (1988-04-01), Parsons
patent: 4918029 (1990-04-01), Kim
patent: 5004702 (1991-04-01), Samata et al.
patent: 5032538 (1991-07-01), Bozler et al.
patent: 5045494 (1991-09-01), Choi et al.
patent: 5272109 (1993-12-01), Motoda
patent: 5322802 (1994-06-01), Baliga et al.
patent: 5322814 (1994-06-01), Rouse et al.
patent: 5352631 (1994-10-01), Sitaram et al.
patent: 5378652 (1995-01-01), Samata et al.
patent: 5432121 (1995-07-01), Chan et al.
patent: 5435856 (1995-07-01), Rouse et al.
patent: 5494837 (1996-02-01), Subramanian et al.
patent: 5496750 (1996-03-01), Moslehi
patent: 5508225 (1996-04-01), Kadoiwa
patent: 5567652 (1996-10-01), Nishio
patent: 5599724 (1997-02-01), Yoshida
patent: 5627102 (1997-05-01), Shinriki et al.
patent: 5633201 (1997-05-01), Choi
patent: 5744377 (1998-04-01), Sekiguchi et al.
patent: 5773350 (1998-06-01), Herbert et al.
patent: 5804470 (1998-09-01), Wollesen
patent: 6177323 (2001-01-01), Wu
patent: 54-158880 (1979-12-01), None
patent: 2-37745 (1990-02-01), None
patent: 2-260667 (1990-10-01), None
patent: 8-236728 (1996-09-01), None
patent: 10-107219 (1998-04-01), None
patent: 11-97519 (1999-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of manufacturing a semiconductor device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of manufacturing a semiconductor device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing a semiconductor device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2471811

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.