Wafer bonding hermetic encapsulation

Active solid-state devices (e.g. – transistors – solid-state diode – Housing or package – Portion of housing of specific materials

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S678000, C257S728000, C257S730000, C257S680000, C257S698000, C257S778000

Reexamination Certificate

active

06822326

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is related to the packaging and encapsulation of semiconductor devices, including electronic devices, optoelectronic devices, microelectromechanical system (MEMS) devices, and high-frequency devices.
2. Discussion of the Background
In order to protect semiconductor chip devices from environmental hazards, device manufacturers have developed a variety of ways for hermetically encapsulating integrated circuit or discrete devices. Many of these techniques rely on adhesive seals or low-temperature solder for low temperature sealing of a cover to a printed wiring board of a substrate including integrated circuits or discrete devices, respectively.
Techniques, such as those disclosed by Rogers et al (U.S. Pat. No. 5,821,692), the entire contents of which are incorporated herein by reference, utilize peripheral seals around a device to provide one level of protection and then encapsulate the device in a fluorinated carbon liquid to add further protection from the environment. Techniques, such as those disclosed by Jacobs (U.S. Pat. No. 6,071,761), the entire contents of which are incorporated herein by reference, encapsulate devices in a polymer resistant to deterioration and resistant to ambient moisture. While effective in sealing the devices from the outside environment, the introduction of foreign materials into direct contact with the devices can impede operation of the devices and over time can contribute to the contamination and failure of the devices. Broom (U.S. Pat. No. 5,516,727), the entire contents of which are incorporated herein by reference, discloses contamination and failure of light-emitting diodes encapsulated in a resin.
A number of alternatives to resin encapsulation of semiconductor devices have been developed for providing sealed hermetic protection of the devices without direct contact between the resin and the encapsulated devices. For example, Bernstein (U.S. Pat. No. 5,501,003), the entire contents of which are incorporated herein by reference, discloses a process in which a non-conductive frame is attached to a conductive lead frame (i.e. a printed wiring board) containing connections to an assembled electronic package. The non-conductive frame is attached and sealed to the conductive lead frame using an ultraviolet curable epoxy applied around a periphery of the conductive lead frame. The electronic package is thus encapsulated having an interior air gap with no interior resin in contact with the encapsulated devices. Similarly, Suzuki et al (U.S. Pat. No. 5,866,942), the entire contents of which are incorporated herein by reference, disclose a metal base package for a semiconductor device in which a cap is adhesively bonded to either a laminated metal base or a metal foil pattern on an large scale integrated (LSI) chip.
The hermetic encapsulation of theses devices depend on the integrity and longevity of the adhesive and the adhesive bond. The adhesive bond is frequently made between dissimilar materials having dissimilar thermomechanical properties from each other and from the adhesive used. As a consequence, the adhesive bond is subject to failure with time and is especially prone to failure during heat cycles.
With the recent interest in micro-electrical mechanical systems (MEMS) devices has come the need for more critical device encapsulation techniques. Lin et al (U.S. Pat. No. 6,232,150), the entire contents of which are incorporated herein by reference, disclose unique problems associated with MEMS devices and disclose the need for reliable encapsulation of MEMS devices which does not contaminate or impede the operation of miniaturized mechanical MEMS devices. For example, MEMS devices require encapsulation without contact or contamination to the enclosed accelerometers, pressure transducers, gyroscopes, and micro-resonators. Furthermore, this encapsulation may require the enclosure of getters or other chemistry, designed to improve the device reliability, for example stiction reduction, without adversely affecting the effectiveness of this chemistry. Lin et al describe prior art encapsulation techniques for MEMS devices and the shortcomings of those approaches. In particular, Lin et al disclose the incompatibility of elevated temperature global heating for the encapsulation of MEMS devices. To alleviate global heating, Lin et al disclose the fabrication of microheaters which locally heat a bonding surface of a cover cap above a MEMS device, thereby sealing the cover cap to the body of the MEMS devices. The complexity of the patterning and the operation of the micro-heaters add cost and are deterrents to the acceptance and utilization of microheaters.
SUMMARY OF THE INVENTION
One object of the present invention is to provide a method for encapsulation which does not rely on encapsulation of an electronic device in a resin.
Another object of the present invention is to provide a method for encapsulation which does not rely on adhesive bonding to provide sealing of an internal relief containing the electronic device.
Another object of the present invention is to provide a method for encapsulation which does not require the fabrication of microheaters to produce localized heating.
Still another object of the invention is to provide a reliable low-temperature method for encapsulation of an electronic device.
A further object of the present invention is to provide a low cost and reliable method for encapsulation of an electronic device.
Still another object of the present invention is to provide simultaneous encapsulation of all devices on a device carrier containing the electronic devices.
Still another object of the present invention is to hermetically encapsulate MEMS devices.
Still another object of the present invention is to provide an encapsulation that results in minimum strain when exposed to temperature variations.
A further object of the present invention is to provide encapsulation that does not adversely affect the effectiveness of getters or other chemistry within the encapsulation.
Still another object of the present invention is to encapsulate MEMS early in the fabrication cycle.
Still another object of the invention is to improve the yield of MEMS devices by encapsulating MEMS devices at wafer scale early in the fabrication cycle.
Still another object of the invention is to provide an encapsulation that provides structural support for a MEMS device.
These and other objects of the present invention are achieved according to the present invention by a method which obtains an encapsulating member configured to enclose the electronic device, prepares a surface of the encapsulating member for non-adhesive direct bonding, prepares a surface of a device carrier including the electronic device for non-adhesive direct bonding and bonds, at or near room temperature, the prepared surface of the encapsulating member to the prepared surface of the device carrier to form an encapsulation of the electronic device.
Thus, in one aspect of the present invention, an encapsulated electronic or optoelectronic device, referred to as an (opto)electronic device, is produced having a device carrier including an (opto)electronic chip device and including a first bonding region encompassing the (opto)electronic chip device. The encapsulated (opto)electronic device includes an encapsulating member having a second bonding region. The encapsulating member is bonded to the device carrier along the first and second bonding regions by means of a non-adhesive direct contact bond. The encapsulating member provides a relief for the (opto)electronic chip device. Non-adhesive direct bonds are formed at low temperature (i.e. near room temperature) between the first and second bonding regions to encapsulate the (opto)electronic chip device.


REFERENCES:
patent: 5501003 (1996-03-01), Bernstein
patent: 5516727 (1996-05-01), Broom
patent: 5821692 (1998-10-01), Rogers et al.
patent: 5866942 (1999-02-01), Suzuki et al.
patent: 6071761 (2000-06-01), Jacobs
patent: 6232150 (2001-05-01), Lin et al.
patent: 629707

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wafer bonding hermetic encapsulation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wafer bonding hermetic encapsulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wafer bonding hermetic encapsulation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3322232

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.