Coating apparatus – Gas or vapor deposition – Multizone chamber
Reexamination Certificate
1999-04-30
2001-03-27
Bueker, Richard (Department: 1763)
Coating apparatus
Gas or vapor deposition
Multizone chamber
C118S729000, C118S730000
Reexamination Certificate
active
06206975
ABSTRACT:
INTRODUCTION AND BACKGROUND
The present invention pertains to a vacuum treatment system to be used to apply thin, hard layers to substrates. A vacuum treatment system of this kind is composed of a transfer chamber and several treatment chambers allocated to it, such that the substrates to be coated can be inserted into or removed from the treatment chambers by means of a handling device located in the transfer chamber.
For coating of substrates by a coating method proceeding under low-pressure conditions, differing types of systems are known which are designed in accordance with the required treatment stations for the substrates. Depending on the desired coating method, e.g., a sputtering method or a vapor-coating method, and depending on the coating system to be applied onto the substrate, differing types of vacuum treatment systems are used. For example, coating systems consisting of several single layers are produced on the substrate by passing the substrate in sequence through individual coating stations, where in each coating station, a specific, single layer is deposited onto the substrate. Additional treatment stations are needed when the substrate is additionally to be subjected to heat treatment, or if the substrate surface is to be subjected to a preceding or subsequent plasma etching process. The configuration of the single treatment stations is established in a known manner either in cluster formation or as an inline system. When using the so-called inline system, the single treatment stations are arranged one behind the other and the substrate is transported successively through these treatment stations to implement the individual treatment steps. These systems have the advantage that they can be easily integrated into the overall process, either upstream or downstream from the vacuum treatment.
In the known cluster systems, the individual treatment chambers are positioned essentially peripherally to the central handling chamber in which a handling device is provided, by means of which the substrates are transported between the individual treatment chambers.
The essential advantage of cluster systems consists in the fact that they are of compact, space-saving design. One disadvantage of these cluster vacuum treatment systems is that the substrates to be treated can only be operated in a so-called batch mode. A continuous operation, like that possible in inline vacuum treatment systems, is usually not possible for cluster systems. For example, in the cluster system, a minimum number of treated substrates is enclosed in one of the treatment stations and after completed processing, all substrates are transported together from the cluster vacuum system.
An object of the present invention is to create a vacuum treatment system by means of which it is possible to process substrates by vacuum processes, where the process sequence can be integrated advantageously into existing production lines and a space-saving design will be obtained.
Another object of the present invention is to provide a method for coating of workpieces in this vacuum treatment system.
SUMMARY OF THE INVENTION
The above and other object of this invention can be achieved with a vacuum treatment system as described herein.
The vacuum treatment system according to this invention consists essentially of a transfer chamber and of several treatment chambers positioned peripherally to the transfer chamber and connected with it by means of common openings for inlet and outlet of the substrate. In the transfer chamber there is a handling device with which the substrates can be transported between the treatment chambers. In this regard, the handling device consists of at least one substrate holder by means of which the substrates to be transported are held. A smooth handling of the substrates within the individual treatment chambers will be ensured in that the substrate holder has a pivoting and/or rotating retaining unit, to which the substrate is attached, and with which the substrate located in the particular treatment chamber can pivot and/or rotate during the processing.
In addition, the invented vacuum treatment system consists of a treatment chamber which has an outer opening that can be closed by a cover. The substrates to be coated are moved into the vacuum treatment system and the coated substrates are removed from the system through this outlet opening. The advantage achieved with the invention consists, in particular, in that the vacuum treatment system can be filled continuously with the substrates to be coated and these can then be subjected to the vacuum treatment process in order then to remove them continuously from the system. At the same time, the vacuum treatment system according to this invention makes possible a compact design which enables integration into existing manufacturing systems.
In addition, due to the mounting of the substrates to be coated to a pivoting and/or rotating retaining unit, it is assured that the substrates in the individual treatment chambers are exposed uniformly to the treatment processes acting on the substrates. This will prevent the coatings to be deposited onto the substrate to be coated, from growing at different rates at different locations of the substrate surface due to their differing alignment to the coating source. Thus, the layer thickness will not be dependent on the substrate shape.
For coating of substrates, it is proposed to provide a vacuum coating device, preferably a vacuum vapor coating device, in at least one of the treatment chambers. For coating of a substrate, the material to be vaporized and deposited is melted or vaporized by heating in the vacuum vapor coating device and the substrate is placed into the material cloud for precipitation of the vaporized material onto the substrate surface.
The vacuum treatment system of the present invention is suitable for uniform depositing of hard, thin layers onto workpieces by means of a vacuum vapor coating method. In this regard, the workpieces to be coated are initially heated in a first treatment chamber in which a heater is located, to a sufficiently high temperature, preferably >800° C., and in the heated state they are moved by means of the handling device into a second treatment chamber containing the vapor coating device.
The hard, thin layers, for example, consist of metallic alloys of the MCrAlY type, where the alloy component M, consists at least of one of the substances nickel, cobalt or iron, or an alloy containing a percentage of the substances nickel, cobalt or iron. For melting of the vapor coating material, which consists of a base alloy of the composition stated above, the use of a known electron beam vaporizing source is suggested. In this case, the vapor coating source will supply the molten material from a reservoir preferably in rod shape.
REFERENCES:
patent: 4962726 (1990-10-01), Matsushita et al.
patent: 4992298 (1991-02-01), Deutchman et al.
patent: 5037676 (1991-08-01), Petropoulos et al.
patent: 5254173 (1993-10-01), Myers
patent: 5656364 (1997-08-01), Rickerby et al.
patent: 5763020 (1998-06-01), Yang
Hoffmann Josef
Michael Klaus
Rick Alfred
Bueker Richard
Fieler Erin
Leybold Systems GmbH
Smith , Gambrell & Russell, LLP
LandOfFree
Vacuum treatment system for application of thin, hard layers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vacuum treatment system for application of thin, hard layers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vacuum treatment system for application of thin, hard layers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2545431