Trench power semiconductor

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S328000, C257S329000, C257S330000, C257S331000, C257S332000, C257S333000

Reexamination Certificate

active

06833584

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a trench power semiconductor component having a cell array and an edge termination which surrounds the latter and is composed of at least one edge trench which is lined with an insulating layer and is also filled with a conductive material which forms a field plate.
In the development of trench power semiconductor components, such as for example DMOS power transistors, the edge termination is of particular significance. This is because there are higher electrical field strengths in the edge of a power semiconductor component owing to the curvatures in the equipotential lines that inevitably occur there, so that the dielectric strength of the edge termination must be greater than the dielectric strength of the actual cells of the power semiconductor component. In addition, for reasons of cost, care must be taken to ensure that the edge termination takes up the smallest possible area in comparison with the cell array of the power semiconductor component because the edge termination as such is not, like the cell array, an active part of the component.
Therefore, for power semiconductor components an edge termination is aimed at which takes up as little area as possible and at the same time has a dielectric strength that is significantly greater than the dielectric strength of the actual cell array.
For many years intensive efforts have been made to fulfil this requirement and from the large number of publications that have arisen from this the following publications have been selected specifically with respect to trench power transistors. German Patent DE 199 35 442 C1 describes a method for manufacturing a trench MOS power transistor in which trenches are provided in the cell array with polycrystalline silicon as the field plate while trenches in the edge termination are lined with a field oxide layer made of silicon dioxide. Here, the field oxide layer is also drawn out onto the surface of the semiconductor element forming the power transistor in the cell array, which masks the implantation for the production of the source zone and body region.
International Patent Application PCT/EP00/8459 (10483) discloses a power semiconductor component with trenches in the active cell array, the trenches being provided on their side walls with insulating layers with different layer thickness in order to reduce the reactive capacitance. Further details on the problem of edge termination are not given here.
In addition, U.S. Pat. No. 5,763,915 discloses a DMOS power transistor configuration in which trenches which are wider than the trenches of the active cell array, and additionally are provided at a distance from one another, or from the outermost trench of the cell array, which differs from the distance between the trenches of the cell array, are used for the edge termination. The trenches of the cell array and of the edge termination are filled with polycrystalline silicon.
Finally, U.S. Pat. No. 4,941,026 describes a power semiconductor component in which trenches are lined with insulating layers that have a smaller layer thickness in an upper region of each trench than in a lower region thereof.
Layer-shaped electrodes are applied to the insulating layers that are provided with two different layer thicknesses in this way.
Specific publications relating to the solution of the problems connected with the edge termination relating to trench power transistors with field plates in the trenches of the cell array and of the edge termination have not been disclosed hitherto.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a trench power semiconductor component which overcomes the above-mentioned disadvantages of the prior art devices of this general type, which is distinguished by a configuration which is economical in terms of area and at the same time permits an edge termination which has a simple configuration and a high dielectric strength.
With the foregoing and other objects in view there is provided, in accordance with the invention, a trench power semiconductor component. The trench power semiconductor component contains a cell array having a trench formed therein and a first insulating layer lining the trench, and the first insulating layer has a first thickness. An edge cell surrounds the cell array and has at least one edge trench formed therein with an outer side wall in relationship to the cell array. The edge cell has a second insulating layer lining the edge trench and a conductive material at least partially fills the edge trench, and the conductive material forms a field plate. The second insulating layer of the edge trench has a second thickness that is greater than the first thickness at least on the outer side wall of the edge trench opposite the cell array.
The object is achieved according to the invention with a trench power semiconductor component of the type mentioned at the beginning by virtue of the fact that the insulating layer of the edge trench is made thicker at least on the outer side wall of the edge trench opposite the cell array than an insulating layer in trenches of the cell array.
In the trench power semiconductor component, the edge cell composed of the edge trench is preferably also supplemented by a “normal” trench of the cell array, namely the outermost trench of the cell array, and the semiconductor region that is positioned between the edge trench and the outermost trench and is composed, for example, of silicon.
The insulating layer which is of a thicker configuration on the outer side wall of the edge trench is located only in the edge trench and does not extend as far as the surface of the semiconductor element on the inner side in the direction of the cell array. In this way, masking resulting from the more thickly configured insulating layer during the implantations of source zone and body region is avoided so that lateral profile deformations for the source zone and the body region, and punches in the trench power semiconductor component caused by these deformations are avoided.
The inner side wall of the edge trench can be configured in various ways: it is thus possible to provide the same insulating layer with the same thickness for the inner side wall of the edge trench and the insulating layer in the trenches of the cell array. Furthermore, the inner side wall of the edge trench can be configured in the same way as the outer side wall. In this case, the more thickly executed insulating layer therefore extends both over the outer side wall and over the inner side wall, but it is to be noted that this more thickly configured insulating layer (thick oxide) is not located on the semiconductor surface between the edge cell and the cell array.
Furthermore, it is possible to allow the thick insulating layer to end at various levels on the inner side wall and then provide a thinner insulating layer (gate oxide) starting from the respective level.
In all of the variants, the edge trench is also filled with the conductive material, in particular polycrystalline silicon, so that in each case a field plate edge trench is provided, the extent of the field plate depending on the junction between the thick oxide and the gate oxide. The trench of the cell array is also filled with the conductive material being polycrystalline silicon.
The overall edge also generally includes a drain-end terminal that preferably contains a field plate of drain potential, with the purpose of a channel stopper in order to interrupt the formation of a channel between the drain and source in the case of a drain/source polarity reversal (see German Patent DE 199 35 442 C1).
In accordance with an added feature of the invention, a substrate is provided and the cell array and the edge cell are formed on and in the substrate. The substrate has a further edge trench formed therein and an additional conductive material fills the further edge trench. The additional conductive material and the conductive material are formed so as to be coherent.
In accordance with a furth

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Trench power semiconductor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Trench power semiconductor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Trench power semiconductor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3295631

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.