Semiconductor device manufacturing: process – Coating of substrate containing semiconductor region or of... – Insulative material deposited upon semiconductive substrate
Reexamination Certificate
2001-07-27
2004-11-23
Coleman, W. David (Department: 2823)
Semiconductor device manufacturing: process
Coating of substrate containing semiconductor region or of...
Insulative material deposited upon semiconductive substrate
C414S935000, C414S936000, C414S938000, C414S940000, C414S941000
Reexamination Certificate
active
06821912
ABSTRACT:
FIELD OF THE INVENTION
The invention generally relates to pallets adapted for holding one or more substrates during processing. More particularly, in one embodiment, the invention is directed to substrate processing pallets adapted to maintain an aligned position during substrate processing and methods and machines employing such substrate processing pallets.
BACKGROUND OF THE INVENTION
Conventional microelectronic and electro-optic device fabrication machines employ numerous processing steps including, for example, repetitive steps of depositing metal or dielectric films such as, silicon, gallium arsenide, and glass onto substrates. Such deposition typically takes place in an evacuated process chamber by way of any of a number of well know techniques, such as sputtering, evaporation and chemical vapor deposition (CVD).
Conventional substrate processing machines typically employ multiple chambers. By way of example, some conventional processing machines employ separate substrate storage, cleaning and deposition chambers. Typically, substrate processing machines employ complex mechanical mechanisms for transporting the substrates between the chambers. Conventional transport mechanisms can introduce substrate positioning errors. Additionally, during processing, the substrates and the various transport mechanisms and any substrate carrying pallets or pallets may be subjected to wide variations in temperature. Since the substrates, pallets/trays and transport mechanisms are typically formed from varying materials having varying thermal coefficients of expansion, exposure to temperature variations can introduce additional substrate positioning errors. Further, as a result of repetitive processing steps, these type of positioning errors can accumulate, causing even larger positioning errors. Some conventional processing machines employ such mechanisms as chain drives and tracking to reduce positioning error accumulation. However, such solutions tend to be expensive and complex.
One example of a conventional substrate processing machine employs cluster processing. Cluster processing machines provide a plurality of process chambers that are clustered around a central platform. A transport mechanism or robot moves the substrates between the various process chambers. Typically, each process chamber performs a single task and can be operated independently from the other process chambers. By way of example, individual process chambers may clean a substrate before processing, etch the substrate, etch a film deposited onto the substrate, and deposit metal or dielectric films onto the substrate. Because multiple chambers can process substrates concurrently, the throughput of cluster machines can be high.
However, typically, the deposition chambers within cluster machines are configured to deposit only one metal or dielectric film. Consequently, in a process requiring multiple layers of metals or dielectric films to be deposited on a substrate, the cluster machine deposits multiple layers sequentially in different process chambers. Thus, conventional cluster tools have a limited capability to deposit multiple layer film coatings, without having to reconfigure the process chambers. Due to the transport of the substrates between the multiple chambers, cluster machines can suffer from positional errors of the type discussed above.
Another conventional processing machine employs batch processing. Batch processing machines process a plurality of substrates (i.e., a batch) concurrently. Typically, such machines load substrates into a process chamber either one-by-one or by first loading the substrates onto a pallet or a tray and then loading the pallet into the process chamber. Batch processing machines can provide a high output, but are typically difficult to automate, difficult to scale to large wafer sizes and/or suffer from substrate alignment errors of the type discussed above.
Another conventional processing machine employs inline processing. Inline processing machines process substrates one by one, though a series of process steps. While, inline processing machines are versatile and have relatively high throughput, one disadvantage is that that the throughput is limited by the process time of the longest process step. Another disadvantage of the inline machines is that due to the use of separate stations for loading and unloading the substrates, they are structurally relatively long as compared to other processing machines. Thus, inline machines may be difficult to locate in space constrained processing facilities.
Thus, there exists a need for a relatively inexpensive, noncomplex mechanism for reducing accumulation of positioning errors. There also exists a need for a substrate processing approach that better lends itself to automation, has improved throughput, and more easily scales for varying wafer sizes.
SUMMARY OF THE INVENTION
The invention generally relates to pallets adapted for holding substrates during processing and to substrate processing machines adapted to employ the substrate processing pallets. According to one embodiment, a substrate processing pallet according to the invention provides features for maintaining improved substrate alignment during processing. According to further embodiments, the substrate processing pallet of the invention provides features for facilitating the loading of substrates onto the pallet; thus, simplifying the handling of substrate batches. According to a further feature, the processing pallet of the invention can accommodate substrates of varying sizes.
In one embodiment, a substrate processing pallet according to the invention has a top surface, a bottom surface and a plurality of side surfaces. The top surface has at least one recess adapted to receive a substrate. Each recess includes a support structure adapted to contact a portion of the substrate during processing. Each recess also includes a plurality of apertures. In one embodiment, during operation, a substrate processing machine initially extends lift pins through the apertures. A robot arm places a substrate onto the lift pins. The processing machine then retracts the lift pins to deposit the substrate onto the support structure of the recess. According to a further feature, each recess is chamfered to facilitate seating the substrate in the recess and on the support structure.
According to another feature, the substrate processing pallet includes a plurality of recesses and can accommodate a batch of substrates. According to a further embodiment, each recess has a particularly shaped outer edge portion adapted to interfit with a correspondingly shaped outer edge portion of a substrate to particularly align the substrate in the recess. According to an additional feature, each recess includes a protuberance adapted to interfit with a notch in a substrate to particularly align the substrate in the recess. In an alternative embodiment, each recess includes a flat outer edge portion adapted to interfit with a similarly flat outer edge portion of a substrate to particularly align the substrate in the recess.
According to another aspect of the invention, the recess has a bottom surface and the support structure includes a shoulder formed along a periphery of the recess and raised with respect to the bottom surface. In one embodiment, the shoulder maintains a gap between a bottom surface of the substrate and the bottom surface of the recess; thus, avoiding potentially damaging contact between the bottom surface of the recess and the bottom surface of the substrate, which may be populated with various devices. According to an additional feature, the shoulder also provides a path of thermal conductivity between the substrate and the substrate processing pallet. In a further embodiment, the alignment pin apertures are located in the support structure shoulder.
According to one embodiment, at least one of the side surfaces has a process positioning feature adapted to interfit and engage with a process chamber feature located inside of a process chamber to particularly position the pallet, and t
Felsenthal David
Klein Martin P.
Sferlazzo Piero
Coleman W. David
NEXX Systems Packaging, LLC
Nguyen Khiem
Proskauer Rose LLP
LandOfFree
Substrate processing pallet and related substrate processing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Substrate processing pallet and related substrate processing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substrate processing pallet and related substrate processing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3314097