Structure of semiconductor device and method for...

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S366000, C257S365000, C257S319000

Reexamination Certificate

active

06548862

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a structure of a semiconductor device and a method for manufacturing the same, and more particularly, to a structure of a semiconductor device including gate electrodes having a T-shaped structure comprised of first and second gate electrodes having low gate resistance and low parasitic capacitance and a halo ion-implanted region in which a short channel effect can be effectively suppressed, and a method for manufacturing the same capable of performing high angle ion implantation without extending gate-to-gate space.
2. Description of the Related Art
In semiconductor devices employing a MOS transistor, critical dimension (CD) of the gate electrode has many effects on the properties of the MOS transistor. As semiconductor devices become highly integrated, the CD of the gate electrode becomes smaller. As a result, a method for forming a shallow junction is used so as to improve a short channel effect caused by scale down of the MOS transistor. However, this has limitations in reducing resistance of a source/drain extension region. As an alternative to this, halo ion implantation has been suggested. However, as the CD of the gate electrode becomes much smaller, the concentration of halo ion implantation becomes higher, resulting in an increase in junction capacitance and junction leakage current, and a decrease in on-current. High angle ion implantation has been suggested to solve these problems.
High angle ion implantation is a method for selectively implanting impurity ions into the sides of source/drain extension regions by using a high angle during ion implantation to form a halo ion-implanted region, and effectively prevents a short channel effect even though impurity ions with low concentration are implanted into the sides of the source/drain extension regions. When the concentration of the impurities in the halo ion-implanted region is reduced, a body effect is reduced, thereby increasing on-current and reducing off-current. Further, the high angle halo ion implantation causes a decrease in junction capacitance and a decrease in variation in gate length. However, as semiconductor devices become highly integrated, due to limitations in gate-to-gate space, halo ion implantation having more than a predetermined angle is impossible, and thus, the advantages of the high angle halo ion implantation cannot be realized. That is, as previously described, the high angle halo ion implantation is essentially used to manufacture a high performance transistor. However, due to adjacent gate electrodes, a shadowing effect occurs during ion implantation, and thus, the high angle halo ion implantation cannot be performed. In order to solve the problem, the interval between gate electrodes should be extended, or the height of the gate electrode should be reduced. However, extending intervals between gate electrodes results in an increase in chip size and runs counter to high integration. Further, reducing the height of the gate electrode does not provide a sufficient height margin for the formation of silicate required to reduce resistance, increasing the possibility that silicate on a gate may attack a gate oxide layer or an active region, and thus, sufficient gate electrode height for a subsequent chemical mechanical polishing (CMP) process cannot be obtained.
FIG. 1
is a sectional view illustrating effects of the height of a gate electrode and a gate-to-gate space on an ion implantation angle.
Referring to
FIG. 1
, when the interval between gate electrodes is a, the height of the gate electrode is b, and the angle between a normal to the surface of the semiconductor substrate
10
and the path of the impurity ions is &thgr;, a sufficient ratio of a b is required in order to employ high angle halo ion implantation. To achieve this, the interval a between gate electrodes should be sufficiently extended, or the height b of the gate electrode should be sufficiently reduced. However, reducing the height b of the gate results in the margin of the height of a gate being insufficient for the formation of silicide required to reduce resistance, and the gate oxide layer
12
or the active region may be attacked by silicide on the gate, and a gate electrode of sufficient height for a subsequent CMP process cannot be obtained. Extending the interval a between gate electrodes results in loss in a design rule, and thus the size of the chip becomes larger. This runs counter to high integration in the semiconductor manufacturing process.
SUMMARY OF THE INVENTION
To solve the above problem, it is a first object of the present invention to provide a structure of a semiconductor device including gate electrodes having a T-shaped structure comprised of first and second gate electrodes having low gate resistance and low parasitic capacitance and a halo ion-implanted region in which a short channel effect can be effectively suppressed.
It is a second object of the present invention to provide a method for manufacturing the same capable of performing high angle ion implantation without extending gate-to-gate space.
In accordance with the invention, there is provided a semiconductor device. The semiconductor device includes a first ion-implanted region formed in a semiconductor substrate, a second ion-implanted region formed at both sides of the first ion-implanted region, a halo ion-implanted region adjacent to the second ion-implanted region opposite the first ion-implanted region, a gate oxide layer formed on the semiconductor substrate, a first gate electrode formed on the gate oxide layer, a silicon nitride (Si
3
N
4
) layer formed on the semiconductor substrate and along side-walls of the gate oxide layer and the first gate electrode, an oxide layer adjacent to the silicon nitride (Si
3
N
4
) layer, opposite the first gate electrode, a second gate electrode formed on the first gate electrode, the silicon nitride (Si
3
N
4
) layer, and the oxide layer, and first spacers formed on sidewalls of the second gate electrode and the oxide layer.
In one embodiment, gate electrodes comprised of the first gate electrode and the second gate electrode have a T-shaped structure in which the width of the second gate electrode is greater than that of the first gate electrode.
The silicon nitride (Si
3
N
4
) layer formed at both sides of the first gate electrode has an L-shaped or reverse L-shaped cross-section.
In one embodiment, the gate oxide layer is formed on the semiconductor substrate between the second ion-implanted regions.
The first ion-implanted region can be formed on the semiconductor substrate in a region wider than an interval between the first spacers.
An impurity in the halo ion-implanted region has a conductivity type opposite to that of the impurity in the first and second ion-implanted regions.
The concentration of impurity in the first ion-implanted region is higher than that of the second ion-implanted region.
It is preferable that the concentration of impurity in the first ion-implanted region be 3×10
15
~7×10
15
cm
−2
, and the concentration of impurity in the second ion-implanted region be 1×10
14
~2×10
15
cm
−2
.
It is also preferable that the concentration of an impurity in the halo ion-implanted region be 1×10
13
~5×10
14
cm
−2
.
It is also preferable that the first gate electrode be formed of polycrystalline silicon or silicon germanium (SiGe).
It is also preferable that the height of the first gate electrode be 500-1000 Å.
It is also preferable that the second gate electrode is formed of polycrystalline silicon or silicon germanium (SiGe).
It is also preferable that the height of the second gate electrode be 300-1500 Å.
It is also preferable that the silicon nitride (Si
3
N
4
) layer be formed to a thickness of 30-200 Å.
The structure may further include a third ion-implanted region formed in the semiconductor substrate between the first spacers, and a second spacer formed at the sides of the first spacers.
In accordance with the i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Structure of semiconductor device and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Structure of semiconductor device and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structure of semiconductor device and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3065462

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.