Structure for masking integrated capacitors of particular...

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S003000, C438S253000, C438S239000, C438S381000, C438S396000, C257S296000, C257S303000, C257S306000, C257S310000

Reexamination Certificate

active

06495413

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to the field of fabricating integrated capacitors. In particular it relates to structure of, and methods for fabrication of, integrated capacitors as used in ferroelectric memory integrated circuits. The invention relates in particular to deposition, masking, and etching, of the dielectric and electrode layers of ferroelectric capacitors in ferroelectric memory integrated circuits.
BACKGROUND OF THE INVENTION
Standard Dynamic Random Access Memory (DRAM) and Static Random Access Memory (SRAM) devices are considered volatile memory devices because data stored therein is lost when power is lost. Nonvolatile memory devices are those that can retain data despite loss of power.
At present, there is a strong market for EEPROM (Electrically Erasable, Programmable Read Only Memory), and Flash EEPROM nonvolatile memory devices. These devices tend to be slow to write, often having write times on the order of milliseconds, while read times range generally between one nanosecond and one microsecond. The great difference between read and write times, together with the block-erase character of Flash EEPROM, complicates design of some systems. CMOS SRAM or DRAM with battery backup power for data retention can provide symmetrical, fast, read and write times in nonvolatile memory but is expensive, requires presence of a battery, and limits system life or requires eventual battery replacement.
It is known that Ferroelectric Random Access Memory (FRAM) is a nonvolatile memory technology having potential for both read and write times below one microsecond. FRAM nonvolatile memory devices based on Lead Zirconium Titanate (PZT) ferroelectric storage capacitors as memory elements integrated with CMOS addressing, selection, and control logic are known in the art and are commercially available. PLZT is a Lanthanum-doped form of PZT wherein some of the lead is replaced with Lanthanum, for purposes of this patent the term PZT includes PLZT. It is known that PZT may additionally be doped with strontium and calcium to improve its ferroelectric dielectric properties. Ferroelectric storage capacitors having a strontium bismuth tantalate (SBT) dielectric are also known in the art. For purposes of this patent the term Ferroelectric Dielectric includes both PZT and SBT materials.
It is expected that FRAM devices having smaller device geometries and smaller ferroelectric storage capacitors than currently available devices will offer greater speed and storage density at lower cost. Producing such FRAM devices requires production of well-defined, uniform, high quality, ferroelectric storage capacitors integrated with CMOS addressing and control logic.
Ferroelectric storage capacitors of FRAM devices have a bottom electrode interfacing with a ferroelectric layer, often PZT or SBT, that serves as the ferroelectric dielectric. The ferroelectric layer is typically deposited on top of the bottom electrode, and a top electrode is deposited on top of the ferroelectric layer. These layers are masked and etched to define the size and location of each capacitor. A passivation layer is formed over the resulting capacitors. This layer is masked and etched to allow connection of each capacitor to other components of each memory cell and to other components, such as CMOS addressing, selection, and control logic of the integrated circuit.
A prior process for fabricating an array of ferroelectric storage capacitors is described in U.S. Pat. No. 6,090,443, (the '443 patent) entitled “Multi-Layer approach for optimizing Ferroelectric Film Performance” and assigned to Ramtron International Corporation, Colorado Springs, Colo., the disclosure of which is incorporated herein by reference. This process involves the following steps all performed after deposition of an adhesion layer onto a substrate, the substrate may be a partially processed CMOS integrated circuit wafer:
Deposition of a metallic bottom electrode layer.
Deposition of a PZT layer.
Annealing the deposited PZT.
Depositing a top electrode layer.
Once these layers are deposited, they must be patterned to form an array through at least one masking and etching sequence. Each masking and etching sequence requires deposition of a photoresist over the array of partially processed capacitors, aligning the array with a photomask, exposing, developing, and curing the photoresist, and etching to remove undesired portions of the layers. The etching is controlled by remaining cured photoresist. Etching is typically performed with dry etch techniques, such as plasma etching or ion milling.
It is known that typical dry etch techniques as commonly used in processing capacitor arrays cause damage to the cured photoresist used to control etching. This damage may result in undercutting at edges of resist opening. As cured photoresist layers are eaten away, this damage may also result in undesired etching of those portions of the layers that should remain to form the array.
Typically, fabricating such a capacitor array is performed through a sequence of two or more masking and etching sequences because excessive damage to the photoresist occurs before the undesired portions of the layers are adequately removed. It is known, however, that repeated masking and etching sequences are expensive and can result in undesirable edge profiles of remaining portions as a result of misalignment. The undesirable edge profiles may necessitate greater spacing between capacitor array elements than may be otherwise possible. In particular, it is repeated photomasking operations that drive up cost.
It is also known that exposure of photoresist to dry etch causes release of an assortment of chemical compounds that contain carbon and hydrogen. It is also known that excessive exposure of ferroelectric dielectrics, such as PZT, to these compounds, including hydrogen, can induce undesirable properties in the dielectrics. For this patent, induction of undesirable properties by these compounds is known as photoresist byproduct poisoning of the dielectric. It is therefore desirable to protect the dielectric layer from these chemical compounds during the etching process.
A hardmask is a layer of resistant material that is patterned with photolithographic techniques as known in the art and used to control circuit processing. The resistant material is a material that is more stable than cured photoresist under at least some conditions, these conditions may include etching, diffusing, or oxidizing conditions. Hardmask layers are occasionally used in the processing of integrated circuits; although they are typically formed of nonconductive material. For example, standard CMOS processing uses a nonconductive silicon nitride hardmask layer to protect future diffused areas during field oxidation. U.S. Pat. No. 5,936,306 describes a process utilizing a titanium silicide layer as a conductive hard mask for controlling wet etch of titanium nitride. U.S. Pat. No. 5,998,258 discloses a process for forming capacitors having a barium strontium titanate dielectric wherein a hardmask layer of titanium or tantalum nitride is used to pattern a top electrode. U.S. Pat. No. 5,998,258 also suggests, in column 4, using a hardmask layer in fabrication of capacitors having PZT ferroelectric dielectric and metallic top electrode.
Strontium ruthenium oxide, SrRuO
3
(SRO) is known to be a conductive metal oxide that has interesting magnetic properties. J. C. Jiang, X. Q. Pan and C. L. Chen discuss deposition of SRO films by laser ablation in an article entitled: “Microstructure of Epitaxial SrRuO
3
Thin Films on (
001
) SrTi
O
3
”.
SUMMARY OF THE INVENTION
This process involves the following steps all performed after deposition of an adhesion layer onto a substrate, the substrate may be a partially processed CMOS integrated circuit wafer:
Deposition of a metallic bottom electrode layer.
Deposition of a PZT dielectric layer.
Annealing the deposited dielectric.
Depositing a top electrode layer.
Depositing a strontium ruthenium oxide (SRO) hardmask layer over the top electrode layer.
Depositing,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Structure for masking integrated capacitors of particular... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Structure for masking integrated capacitors of particular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structure for masking integrated capacitors of particular... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2997665

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.