Active solid-state devices (e.g. – transistors – solid-state diode – Non-single crystal – or recrystallized – semiconductor... – Field effect device in non-single crystal – or...
Patent
1994-12-12
1997-03-25
Crane, Sara W.
Active solid-state devices (e.g., transistors, solid-state diode
Non-single crystal, or recrystallized, semiconductor...
Field effect device in non-single crystal, or...
257 72, 257607, H01L 2976, H01L 31036, H01L 31112
Patent
active
056147333
ABSTRACT:
A semiconductor device has a first thin film transistor and a second thin film transistor formed on a substrate. Both of the first and second thin film transistor have a crystallized channel region. One of the first and second thin film transistor is doped with a catalyst metal at a sufficient concentration for promoting the crystallization of the channel region which the other of the first and second thin film transistors is not doped with the catalyst metal.
REFERENCES:
patent: 4746628 (1988-05-01), Takafuji et al.
patent: 5147826 (1992-09-01), Liu et al.
patent: 5275851 (1994-01-01), Fonash et al.
patent: 5403772 (1995-04-01), Zhang et al.
patent: 5426064 (1995-06-01), Zhang et al.
C. Hayzelden et al., "In Situ Transmission Electron Microscopy Studies of Silicide-Mediated Crystallization of Amorphous Silicon" (3 pages), Appl. Phys. Lett., vol. 6, No. 2, Jan. 13, 1992, 225-227.
A.V. Dvurechenskii et al., "Transport Phenomena in Amorphous Silicon Doped by Ion Implantation of 3d Metals", Akademikian Lavrentev Prospekt 13, 630090 Novosibirsk 90, USSR, pp. 635-640.
T. Hempel et al., "Needle-Like Crystallization of Ni Doped Amorphous Silicon Thin Films", Solid State Communications, vol. 85, No. 11, pp. 921-924, 1993.
"Crystallized Si Films By Low-Temperature Rapid Thermal Annealing of Amorphous Silicon", R. Kakkad, J. Smith, W.S. Lau, S.J. Fonash, J. Appl. Phys. 65(5), Mar. 1, 1989, 1989 American Institute of Physics, p. 2069-2072.
"Polycrystalline Silicon Thin Film Transistors on Corning 7059 Glass Substrates Using Short Time, Low Temperature Processing", G. Liu, S.J. Fonash, Appl. Phys. Lett. 62 (20), May 17, 1993, 1993 American Institute of Physics, p. 2554-2556.
"Selective Area Crystallization of Amorphous Silicon Films by Low-Temperature Rapid Thermal Annealing", Gang Liu and S.J. Fonash, Appl. Phys. Lett. 55 (7), Aug. 14, 1989, 1989 American Institute of Physics, p. 660-662.
"Low Temperature Selective Crystallization of Amorphous Silicon", R. Kakkad, G. Liu, S.J. Fonash, Journal of Non-Crystalline Solids, vol. 115, (1989), p. 66-68.
Takayama Toru
Takemura Yasuhiko
Zhang Hongyong
Butts Karlton C.
Crane Sara W.
Ferguson Jr. Gerald J.
Semiconductor Energy Laboratory Co., Inc.
LandOfFree
Semiconductor device having crystalline thin film transistors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Semiconductor device having crystalline thin film transistors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device having crystalline thin film transistors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2205521