Semiconductor device fabrication

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

438766, 438770, 438786, H01L 21336

Patent

active

059083123

ABSTRACT:
A method of preventing diffusion penetration of the dopant used to dope polysilicon gate material in a MOSFET is disclosed. Atomic nitrogen is introduced into the substrate prior to gate oxide growth. The nitrogen later diffuses upward into the gate oxide and blocks subsequent ion implanted gate dopants from penetrating to the substrate. Low dosages of atomic nitrogen implantation, while not significantly affecting gate oxide growth rate, produce significant improvements in the damage immunity of thin gate oxides.

REFERENCES:
patent: 5316965 (1994-05-01), Philipossian et al.
patent: 5330920 (1994-07-01), Soleimani et al.
patent: 5385630 (1995-01-01), Philipossian et al.
patent: 5596218 (1997-01-01), Soleimani et al.
D. M. Fleetwood and N. S. Saks, "Oxide, Interface, and Border Traps in Thermal N.sub.2 O-Nitrided Oxides", J. Appl. Phys., 79, 1583 (1996).
H. Shin and C. Hu, "Monitoring Plasma-Process Induced Damage in Thin Oxide", IEEE Tran. Semicond. Manufacturing, 6, 96 (1993).
K. P. Cheung, "On the use of Fowler-Nordheim stress to reveal plasma-charging damage", Proceedings, 1996 International Symp. On Plasma Process Induced Damage (P2ID), Santa Clara, CA, U.S.A., p. 11.
L. K. Han, M. Bhat, D. Wristers, H. H. Wang, and D. L. Kwong, "Recent Developments in Ultra Thin Oxynitride Gate Dielectrics", Microelectronic Engineering 28, 1995, pp. 89-96.
C.T. Liu, Y. Ma, K. P. Cheung, C. P. Chang, L. Fritzinger, J. Becerro, H. Luftman, H. m. Vaidya, J. I. Colonell, A. Kamgar, J. F. Minor, R. G. Murray, W. Y. C. Lai, C. S. Pai and S. J. Hillenius, "25.ANG. Gate Oxide without Boron Penetration for 0.25 and 0.3-.mu.m PMOSFETs", Technical Digest, 1996 Symposium on VLSI Technology, Honolulu, U.S.A., p. 18.
Kin P. Cheung, "A new method to monitor gate-oxide reliability degradation," Tech. Digest, VLSI Technology Symposium, 1995, pp. 83.
T. Arakawa, T. Hayashi, M. Ohno, R. Matsumoto, A. Uchiyama and H. Fukuda, "Relationship between Nitrogen Profile and Reliability of Heavily Oxynitrided Tunnel Oxide Films for Flash Electrically Erasable and Programmable ROMs", Jpn. J. Appl. Phys., 34, 1007 (1995).
J. Yoon, S. Lee and B. Kim, "The Evaluation of Plasma Damage on N.sub.2 O Oxide and Pure Oxide", Proceedings, 1996 International Symp. On Plasma Process Induced Damage (P2lD), Santa Clara, CA, U.S.A., p. 181.
Liu et al., "Light Nitrogen Implant for Preparing THin-Gate Oxides," IEEE Electron Device Letters, vol. 18, No. 3, pp. 105-107, Mar. 1997.
Doyle et al., "Simultaneous Growth of Different Thickness Gate Oxides in Silicon CMOS Processing," IEEE Electron Device Letters, vol. 16, No. 7, pp. 301-302, Jul. 1995.
Liu et al., "25 Angstrom Gate Oxide without Boron Penetration for 0.25 and 0.3-micron PMOSFET," 1996 Symosium on VLSI Technology Digest of Technical Papers, IEEE, pp. 18, 19, Jun. 11, 1996.
Soleimani et al., "Formation of Ultrathin Nitrided SiO2 Oxides by Direct Nitrogen Implantation into Silicon," J. Electrochem. Soc., vol. 142, No. 8, pp. L132-L135, Aug. 1995.
Liu et al., "High Performance 0.2 micron CMOS with 25 Angstrom Gate Oxide Growth on Nitrogen Implanted Si Substrates," IEEE, IEDM 96-499-502, 1996.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor device fabrication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor device fabrication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device fabrication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-951302

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.