Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Die bond
Reexamination Certificate
2000-08-24
2002-06-11
Clark, Sheila V. (Department: 2815)
Active solid-state devices (e.g., transistors, solid-state diode
Combined with electrical contact or lead
Die bond
C257S782000, C257S677000, C257S666000
Reexamination Certificate
active
06404066
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a semiconductor device and in particular to a semiconductor device and a process for manufacturing the same using a polyimide bonding agent (paste) to bond a semiconductor chip on a lead frame made of a copper alloy.
2. Description of the Related Art
The semiconductor device comprises a semiconductor chip
4
which is bonded on a die pad
1
a
of a lead frame with a bonding agent
3
such as Ag paste as shown in FIG.
1
. Each electrode pad
6
of the semiconductor chip
4
is connected to an inner lead
2
of each terminal of the lead frame through a gold wire. The semiconductor device is of structure in that the above-mentioned elements are sealed with a sealing resin. A part of each inner lead of the lead frame (represented with hatching) is plated with Ag so that the inner lead can be connected to a gold wire
5
in an atmosphere.
If the package for the device is very small in size or the die pad is very large in comparison with the package, only a design in which the inner leads are short would be made possible. Plating of the inner lead with Ag in such a condition will cause a problem in that plating material which is Ag may leak out from the package beyond the inner leads.
FIG. 2
is a schematic view showing a part of one of the inner leads
2
shown in
FIG. 1
in a enlarged scale. A reference P in the drawing denotes a package line. If the lead frame having a small plating area as shown in the drawing is plated, leakage of the plating material out from the package beyond the maximum value of the plating area would be inevitable.
Leakage of the Ag plating out from the package may cause serious problems relating to reliability, such as migration M of as shown in FIG.
3
and deterioration in reliability on humidity resistance.
For the above-mentioned reasons, it is very hard to plate a part of the inner lead
2
of the lead frame with Ag if the package is very small in size or the die pad is very large in comparison with the package. It is common to conduct Cu plating in lieu of Ag plating.
Then, the lead frame which has been plated with Cu will be considered. If the lead is made of, for example, an iron alloy such as 42 Ni, a gold film having a thickness of about 15000 to 30000 Å is deposited on the reverse side of the semiconductor chip and the chip is heated up to about 450 to 550° C. in a reduced atmosphere, so that the semiconductor chip is directly bonded on a die pad of the lead frame with gold, or with Au—Si. Subsequently, the electrode pad of the semiconductor chip is connected to the inner leads of the lead frame at about 300° C. in a reduced atmosphere with wires mainly consisting of gold or copper. The semiconductor chip, wires, and inner leads of the lead frame are sealed with a resin. Thus, a semiconductor device is manufactured.
If the lead frame which is plated with copper is made of an iron alloy, gold is vacuum deposited on the reverse side of the chip to a thickness of about 15000 to 30000 Å. Bonding between the semiconductor chip and the lead frame is possible by either direct bonding using gold or bonding using an Au—Si preform.
However, if the lead frame which is plated with copper is made of a copper alloy, direct bonding or Au—Si die bonding may cause cracks to occur in the semiconductor chip due to thermal expansion and contraction in associated with changes in temperature on bonding between the semiconductor chip and the lead frame since they have different thermal expansion coefficients. Accordingly, the semiconductor device can not be produced by this method.
When the copper frame is bond to the semiconductor chip, commonly used epoxy resin Ag paste is cured at about 150° C. to 200° C. and then wire bonding is carried out at about 200° C. to 250° C. Since this semiconductor device has the inner leads of the lead frame which are not plated with Ag, it is necessary to conduct reduction for removing an oxide film from the lead frame surface.
In order to reduce the oxide film in a short period of time, it is necessary to heat it above 300° C. However, heating of the epoxy resin Ag paste above 300° C. will cause the pyrolysis of the resin so that the reliability on the bonding between the semiconductor chip and the lead frame will remarkably lower. If the temperature of the lead frame is suppressed to be lower than 300° C. in order to prevent the pyrolysis of the resin, the reliability on the bonding between the inner leads of the lead frame and gold wires would largely lower. In either case, a process for manufacturing the semiconductor device including a lead frame made of a copper alloy in which its reliability is assured enough has not been established.
It is an object of the present invention to provide a semiconductor device including a copper alloy lead frame in which its reliability which is higher than that including the iron alloy lead frame is assured and a process for manufacturing the same at a low cost.
SUMMARY OF THE INVENTION
In order to accomplish the above-mentioned object, the present invention provides a semiconductor device comprising a semiconductor chip which is bonded with a polyimide bonding agent to a lead frame of a copper alloy which has been plated with copper, in which the electrode of the semiconductor chip is connected to each terminal of the lead frame with a wire mainly comprising gold or copper and in which bonded portions between the semiconductor chip and the wires and between the lead frame and the wires are sealed with a resin.
The invention resides in a process for manufacturing a semiconductor device comprising the steps of applying a polyimide paste on a lead frame of a copper alloy, which has been plated with copper to mount a semiconductor chip on the lead frame, curing said polyimide paste by heating it while maintaining an pressure-reduced atmosphere by evacuation thereof, then conducting wire bonding between the electrode of the semiconductor chip and each terminal of the lead frame in a reducing atmosphere.
The invention resides in a process for manufacturing a semiconductor device comprising the steps of applying a polyimide paste on a lead frame of a copper alloy, which has been plated with copper to mount a semiconductor chip on the lead frame, curing said polyimide paste by heating it at about 300° C. for about 60 minutes while maintaining an pressure-reduced atmosphere at 10
1
through 10
2
Torr by evacuation thereof, then conducting wire bonding between the electrode of the semiconductor chip and each terminal of the lead frame while reducing in a forming gas of about 300° C. to 450° C.
The invention resides in a method of manufacturing a semiconductor device as defined in the preceding paragraph in which said forming gas comprises about 5 to 10% of H
2
and the rest of N
2
.
According to the invention, a semiconductor device having a reliability which is higher than that including iron alloy lead frame can be readily obtained by using a lead frame made of a copper alloy which has not been plated with silver but plated with copper since the polyimnide bonding agent can be used, and since the oxidation of copper can be prevented, a semiconductor device can be manufactured by conducting packaging of the semiconductor chip using a lead frame which has not been plated with silver, that is, a lead frame made of a copper alloy which has been plated with copper.
REFERENCES:
patent: 4942454 (1990-07-01), Mori et al.
patent: 5252855 (1993-10-01), Ogawa et al.
patent: 5424578 (1995-06-01), Fujita et al.
patent: 5859471 (1999-01-01), Kuraishi et al.
patent: 6034422 (2000-03-01), Horita et al.
patent: 6252299 (2001-06-01), Masuda et al.
patent: 6303981 (2001-10-01), Moden
patent: 6310390 (2001-10-01), Moden
patent: 2-86157 (1990-03-01), None
Tsuji Masahiro
Yamaguchi Tsunemori
Clark Sheila V.
Rohm & Co., Ltd.
LandOfFree
Semiconductor device and process for manufacturing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Semiconductor device and process for manufacturing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device and process for manufacturing the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2973188