Semiconductor device and method of manufacture

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S154000

Reexamination Certificate

active

07615435

ABSTRACT:
A semiconductor device and method of manufacture and, more particularly, a semiconductor device having strain films and a method of manufacture. The device includes an embedded SiGeC layer in source and drain regions of an NFET device and an embedded SiGe layer in source and drain regions of a PFET device. The PFET device is subject to compressive strain. The method includes embedding SiGe in source and drain regions of an NFET device and implanting carbon in the embedded SiGe forming an SiGeC layer in the source and drain regions of the NFET device. The SiGeC is melt laser annealed to uniformly distribute the carbon in the SiGeC layer, thereby counteracting a strain generated by the embedded SiGe.

REFERENCES:
patent: 6483171 (2002-11-01), Forbes et al.
patent: 6717216 (2004-04-01), Doris et al.
patent: 6720630 (2004-04-01), Mandelman et al.
patent: 6825529 (2004-11-01), Chidambarrao et al.
patent: 6831292 (2004-12-01), Currie et al.
patent: 6933577 (2005-08-01), Cabral, Jr. et al.
patent: 6974981 (2005-12-01), Chidambarrao et al.
patent: 6977194 (2005-12-01), Belyansky et al.
patent: 7002209 (2006-02-01), Chen et al.
patent: 7015082 (2006-03-01), Doris et al.
patent: 7132322 (2006-11-01), Greene et al.
patent: 7176116 (2007-02-01), Cabral, Jr. et al.
patent: 7303949 (2007-12-01), Chen et al.
patent: 2002/0063292 (2002-05-01), Armstrong et al.
patent: 2002/0182822 (2002-12-01), Mandelman et al.
patent: 2003/0032261 (2003-02-01), Yeh et al.
patent: 2003/0040158 (2003-02-01), Saitoh
patent: 2004/0238914 (2004-12-01), Deshpande et al.
patent: 2004/0262784 (2004-12-01), Doris et al.
patent: 2005/0040460 (2005-02-01), Chidambarrao et al.
patent: 2005/0082634 (2005-04-01), Doris et al.
patent: 2005/0087824 (2005-04-01), Cabral, Jr. et al.
patent: 2005/0093030 (2005-05-01), Doris et al.
patent: 2005/0098829 (2005-05-01), Doris et al.
patent: 2005/0106799 (2005-05-01), Doris et al.
patent: 2005/0145954 (2005-07-01), Zhu et al.
patent: 2005/0148142 (2005-07-01), Cabral, Jr. et al.
patent: 2005/0148146 (2005-07-01), Doris et al.
patent: 2005/0189589 (2005-09-01), Zhu et al.
patent: 2005/0194699 (2005-09-01), Belyansky et al.
patent: 2005/0236668 (2005-10-01), Zhu et al.
patent: 2005/0245017 (2005-11-01), Belyansky et al.
patent: 2005/0260808 (2005-11-01), Chen et al.
patent: 2005/0280051 (2005-12-01), Chidambarrao et al.
patent: 2005/0282325 (2005-12-01), Belyansky et al.
patent: 2006/0011984 (2006-01-01), Currie
patent: 2006/0014366 (2006-01-01), Currie
patent: 2006/0027868 (2006-02-01), Doris et al.
patent: 2006/0057787 (2006-03-01), Doris et al.
patent: 2006/0060925 (2006-03-01), Doris et al.
patent: 2006/0125008 (2006-06-01), Chidambarrao et al.
patent: 64-76755 (1989-03-01), None
G. Zhang, et al., “A New ‘Mixed-Mode’ Reliability Degradation Mechanism in Advanced Si and SiGe Bipolar Transistors.” IEEE Transactions on Electron Devices, vol. 49, No. 12, Dec. 2002, pp. 2151-2156.
H.S. Momose, et al., “Temperature Dependence of Emitter-Base Reverse Stress Degradation and its Mechanism Analyzed by MOS Structures.” 1989 IEEE, Paper 6.2, pp. 140-143.
C.J. Huang, et al., “Temperature Dependence and Post-Stress Recovery of Hot Electron Degradation Effects in Bipolar Transistors.” IEEE 1991, Bipolar Circuits and Technology Meeting 7.5, pp. 170-173.
H. Li, et al., “Design of W-Band VCOs with High Output Power for Potential Application in 77 GHz Automotive Radar Systems.” 2003, IEEE GaAs Digest, pp. 263-266.
H. Wurzer, et al., “Annealing of Degraded npn-Transistors-Mechanisms and Modeling.” IEEE Transactions on Electron Devices, vol. 41, No. 4, Apr. 1994, pp. 533-538.
B. Doyle, et al., “Recovery of Hot-Carrier Damage in Reoxidized Nitrided Oxide MOSFETs.” IEEE Electron Device Letters, vol. 13, No. 1, Jan. 1992, pp. 38-40.
H.S. Momose, et al. “Analysis of the Temperature Dependence of Hot-Carrier-Induced Degradation in Bipolar Transistors for Bi-CMOS.” IEEE Transactions on Electron Devices, vol. 41, No. 6, Jun. 1994, pp. 978-987.
M. Khater, et al., “SiGe HBT Technology with Fmax/Ft = 350/300 GHz and Gate Delay Below 3.3 ps”. 2004 IEEE, 4 pages.
J.C. Bean, et al., “GEx SI 1-x/Si Strained-Layer Superlattice Grown by Molecular Beam Epitaxy”. J. Vac. Sci. Technol. A 2(2), Apr.-Jun. 1984, pp. 436-440.
J.H. Van Der Merwe, “Regular Articles”. Journal of Applied Physics, vol. 34, No. 1, Jan. 1963, pp. 117-122.
J.W. Matthews, et al., “Defects in Epitaxial Multilayers”. Journal of Crystal Growth 27 (1974), pp. 118-125.
Subramanian S. Iyer, et al. “ Heterojuction Bipolar Transistors Using Si-Ge Alloys”. IEEE Transactions on Electron Devices, vol. 36, No. 10, Oct. 1989, pp. 2043-2064.
R.H.M. Van De Leur, et al., “Critical Thickness for Pseudomorphic Growth of Si/Ge Alloys and Superlattices”. J. Appl. Phys. 64 (6), Sep. 15, 1988, pp. 3043-3050.
D.C. Houghton, et al., “Equilibrium Critical Thickness for Si 1-x Gex Strained Layers on (100) Si”. Appl. Phys. Lett. 56 (5), Jan. 29, 1990, pp. 460-462.
Q. Quyang et al., “Two-Dimensional Bandgap Engineering in a Novel Si/SiGe pMOSFET with Enhanced Device Performance and Scalability”. 2000, IEEE, pp. 151-154.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor device and method of manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor device and method of manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device and method of manufacture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4131678

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.