Rapidly peptizable microcrystalline cellulose-based...

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Gels or gelable composition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S658000, C127S032000

Reexamination Certificate

active

06391368

ABSTRACT:

This invention relates to rapidly peptizable stabilizing agents comprising microcrystalline cellulose and iota carrageenan. More particularly it relates to stabilizing agents comprising these two components which may be readily peptized in aqueous systems in the presence of other ingredients using minimal agitation.
BACKGROUND OF THE INVENTION
Attempts have been made in the past to develop improved microcrystalline cellulose-based stabilizing agents for use in dry mix applications such as instant cocoa milk drinks and low fat or fat-free sauces and gravies. These stabilizing agents may perform one or more desired functions depending on the structure of the agent and on its application. Such functions may include gelling, thickening, suspending, texturizing and/or improving mouthfeel. A requirement of these stabilizing agents is that they can be dispersed with minimal agitation, for example, by being stirred in an aqueous environment with a spoon or a wire whisk. As the dry stabilizing agent is dispersed in water, it must also be peptized to obtain functionality. Peptization means that the dry agent is dispersed in water in a colloidal state. Peptization of a dry agent in aqueous media allows the functionality of the agent to be restored to a level near or at the level observed before the agent was dried. Rapidly-peptized drying agents can be dispersed in a colloidal state with minimal agitation. There is a continuing need for rapidly peptized stabilizing agents that provide desired functionality at low use levels in a variety of food and other applications.
In order to prevent hydrogen bonding, Durand et. al. in U.S. Pat. No 3,539,365 suggest coating the attrited microcrystals with a barrier material. Several materials are mentioned for this purpose, but the most effective is stated to be sodium carboxymethylcellulose (CMC). The patent states (at column 5) that methylcellulose, hydroxypropyl methylcellulose, guar gum, alginates, sugars, surfactants, and other hydrocolloids may have a slight barrier action when added in appreciably higher proportions than CMC. Although the use of CMC is very successful as a barrier coating, it is not universally accepted as a food ingredient because it is a chemically modified cellulose derivative rather than a natural ingredient.
Recognizing the unacceptability of CMC in food ingredients in certain well-populated countries, McGinley in U.S. Pat. No. 4,263,334 avoids the use of CMC by teaching a combination of additives consisting of a first ingredient which is a carbohydrate sweetener, e.g., sucrose, dextrose, or hydrolyzed cereal solids, and a second ingredient which is a hydrocolloid, e.g., guar gum, locust bean gum, gum arabic, sodium alginate, propylene glycol alginate, carrageenan, gum karaya, or xanthan gum. There is no teaching of ready dispersibility for this combination which is used as a component of frozen dairy products, e.g., ice cream, to impart desirable organoleptic characteristics to the food.
In an attempt to prepare an easily dispersible stabilizing agent for dry mix food products, in U.S. Pat. No. 4,311,717 McGinley discloses a stabilizing agent which consists of a spray-dried combination of MCC, CMC, and whey or milk solids. Provided this composition is dry blended with certain other food ingredients, it may be dispersed and peptized with minimal agitation. However, when used in a hot drink, the stabilizer tends to float and become lumpy when stirring is initiated. Furthermore, to obtain functionality similar to other colloidal products, it is necessary to use high levels of the material of this invention because more than 50%, often as much as 75%, of the combination is comprised of CMC and whey or milk solids. The presence of CMC precludes the characterization of this stabilizing agent as being “all natural”.
An improved stabilizing agent comprising MCC coprocessed with CMC, starch, preferably having a low amylose content, and a diluent, maltodextrin, whey, or non-fat dry milk solids, preferably maltodextrin, is disclosed by Tuason et al. in U.S. Pat. No. 4,980,193. This three-component powder when dry blended with whey and cocoa powder disperses with instant peptization to form a stable cocoa suspension. Stable cocoa suspensions described in the patent required 2.0-3.3% of the stabilizing agent. Like the product of U.S. Pat, No, 4,311,717, the claim of being “all natural” cannot be made for this material. Furthermore, manufacture of this three-component stabilizing agent is complex and requires special procedures.
Another MCC-based stabilizing agent is described by Tuason et al. in U.S. Pat. No. 5,366,742. This agent is prepared by mixing colloidal MCC with sodium alginate in water and then adding a soluble calcium salt to the slurry in an amount which deposits a sodium, calcium alginate complex on the surface of the MCC to provide barrier coating properties. After homogenization, the slurry is spray dried. The resulting stabilizing agent may be redispersed in water by use of high shear methods which appear to break the calcium alginate crosslinks, thus allowing dispersion to occur. However, in order to disperse this stabilizing agent using minimal agitation, it is necessary to provide a calcium sequestrant to preferentially react with the calcium in the sodium, calcium complex, thereby solubilizing the alginate.
Few, if any, natural hydrocolloids when coprocessed with MCC provide effective barrier coating properties to the spray-dried powder that is produced. In U.S. Pat. No. 5,192,569 McGinley et al. describe the coprocessing of MCC and a galactomannan gum, e.g., locust bean or guar gum. Prior to spray drying, the MCC is attrited and is, therefore, colloidal. However, the product is claimed to be comprised of spherical particles ranging in size from 0.1 to 100 microns. In Example 1 for instance, spray dried powder has a particle size range of 5-70 microns. Dispersion of this coprocessed material requires high shear conditions. In compositions having 15 weight % or more of the galactomannan gum, high shear dispersion of the spray-dried material results in fibrous particles. Both the dispersed spray-dried granules and the fibrous material are described as being particularly effective in providing fat-like properties to food stuffs.
In contrast to the above materials, the compositions of this invention in which attrited MCC and iota carrageenan are coprocessed in ratios of 80:20 to 50:50, respectively, are readily dispersed and peptized with minimal agitation, e.g., stirring with a spoon or a wire whisk, when they are incorporated in dry mixes. Further, they are capable of stabilization of drinks or salad dressings prepared from these mixes at reduced levels of stabilizer. In addition, since there is no CMC present in these compositions, they may be claimed to be “all natural”, and are therefore acceptable in countries where CMC is not acceptable.
SUMMARY OF THE INVENTION
It has been found that attrited microcrystalline cellulose and iota carrageenan can be coprocessed at ratios between 80:20 and 50:50, respectively, in an aqueous slurry at or above the temperature at which the iota carrageenan is soluble in water. Spray drying this slurry, for example, produces a dry powder which in a dry mix disperses and peptizes in water with minimal agitation, stabilizing the aqueous drink or sauce prepared from the dry mix. Hereafter in this specification, the word ‘carrageenan’ is to be construed as meaning iota carrageenan unless a different meaning is clearly indicated. In a second aspect of this invention the stabilizer can be used at significantly lower levels than prior art compositions, including MCC/CMC compositions, to provide stabilization of aqueous foods. Not only is this dispersion and stabilization effective at approximately neutral pH, but it also is effective at strongly acidic pH values, e.g., in vinegar. In addition, it is effective in solutions containing as much as 24 weight percent salt without the requirement for a protective colloid, e.g., xanthan gum, to be present.
In another aspect of this invention there

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rapidly peptizable microcrystalline cellulose-based... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rapidly peptizable microcrystalline cellulose-based..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rapidly peptizable microcrystalline cellulose-based... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2819595

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.