Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Flavor or flavor adjunct – acidulant or condiment
Reexamination Certificate
2000-01-10
2002-10-01
Corbin, Arthur L. (Department: 1761)
Food or edible material: processes, compositions, and products
Products per se, or processes of preparing or treating...
Flavor or flavor adjunct, acidulant or condiment
C426S429000, C426S431000, C426S435000, C426S436000, C426S489000, C426S655000
Reexamination Certificate
active
06458407
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a process for producing an essential oil from a plant material. More particularly, the invention relates to a process for producing an essential oil, which is free of esters and consists essentially of terpene, in a short period of time and by a simple procedure involving extraction of an essential oil with water in a supercritical state or subcritical state.
PRIOR ART
Essential oils are volatile oils obtained from flowers, buds, leaves, branches, trunks, roots, etc. of various plants and having characteristic aromas. These oils are normally composed of several types of terpenes and aromatic compounds, and have osmophores such as alcohol, phenol and ester. Essential oils are utilized as raw materials for perfumes, and have been obtained by methods such as steam distillation, extraction, and expression.
Steam distillation is a method of distillation which, in the presence of steam, distills off liquids with high boiling points at considerably lower temperatures than the boiling points. Extraction is a method for dissolving certain components into a solvent, and separating and recovering the components. Expression combines squeezing with steam distillation or extraction with an organic solvent to obtain components in distilled form while squeezing the material.
In essential oils collected by these conventional methods, components containing esters are present. The esters are mainly acetic acid esters, which pose the problem of undergoing changes in properties owing to de-esterification which takes place during storage of the essential oils. There is also the drawback that the essential oils tend to undergo oxidative deterioration and acidic decomposition due to acetic acid per se which results from the de-esterification reaction. Furthermore, those conventional methods all give low yields, thus necessitating the use of multiple steps for treatment. Consequently, they are defective in that collection of essential oils by distillation cannot be completed in short periods of time. All of the conventional methods, moreover, possesses the shortcoming from an environmental viewpoint, that squeeze leavings of plant materials emerge as waste.
Various application studies are under way with regard to extraction, purification, synthesis and decomposition using supercritical fluids. For supercritical water, studies on its capacity to detoxify PCB and dioxin (Japanese Patent Public Disclosure (Kokai) No. 327678/97) are being carried out, and its degradation reaction of biomass is also being investigated. Japanese Patent Public Disclosure (Kokai) No. 31000/93 reports a method which selectively hydrolyzes or pyrolyzes natural or synthetic high molecular compounds with the use of supercritical water as a solvent to decompose the polymers into their constituent units or into approximately oligomeric combinations of the constituent units. Examples of this method include the formation of glucose from cellulose contained in large amounts in polymeric resources, such as paper, wood and straw, and conversion of lignin-derived specimens into low molecular compounds. Japanese Patent Public Disclosure (Kokai) No. 268166/97 describes a method for producing various amino acids by hydrolyzing proteins with water present in a supercritical state.
However, it has not been known that it is possible to obtain essential oils by treating plant materials with water present in a supercritical state.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a novel process for producing an essential oil from a plant material.
It is another object of the present invention to provide a process for producing an essential oil from a plant material, the essential oil being free of esters and consisting essentially of terpenes, and an essential oil produced by the process. According to the process of this invention, an essential oil having a composition unobtainable by conventional methods, such as steam distillation, can be provided.
It is a further object of the invention to provide a process for producing an essential oil, in which process an extraction procedure is completed in a very short time (within several minutes), as compared with conventional methods, such as steam distillation, generally used to obtain essential oils.
It is a still further object of the invention to provide a process for producing an essential oil, which process does not discharge waste generated as squeeze leavings as results from conventional methods such as steam distillation.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a process for producing an essential oil in a short period of time and by a simple procedure, the process comprising treating a plant material with supercritical water or subcritical water to liberate essential oil components, which are contained in the plant material, as an ester-free essential oil; and separating and purifying the essential oil.
Plant Materials Used
Examples of plants used to produce an essential oil in accordance with the present invention include, but are not restricted to, bamboo, Japanese cedar, hinoki, Quercus crispula, cherry tree, Japanese horse chestnut, pine tree, hiba arborvitae, Japanese chestnut tree, bamboo grass, oak, paulownia, Japanese apricot, peach, maple tree, zelkova tree, wisteria, fir, elm, ginkgo, camellia, willow, mulberry, magnolia, persimmon, apricot, Chinese quince, sweet brier, rose, loquat, Japanese quince, fragrant olive, camphor tree, Japanese yew, acacia, prickly shrub of Araliaceae, amyris, Boi de Rose, and loo. Depending on the plant selected, an essential oil having various scents is obtained. Two or more of these enumerated plants may be mixed and used in the invention.
Any parts of these plants can be used, such as trunk, bark, stalk, branch, root, leaf, flower, bud, and seed. Typically, a woody portion or a floral portion is used. For example, it is preferred to use wooded-type containers which were used for the production and/or storage of fermented products and foods and drinks, as plant materials, in order to effect utilization of waste materials.
A plant material from these plants may be treated, in any size, with supercritical water. Preferably, the plant material is chopped finely to a size of about 1 cm square, or if it is a floral portion, is cut thinly, for pretreatment, and then is subjected to supercritical water treatment. More preferably, the plant material is powdered, and then subjected to supercritical water treatment.
Conditions for Supercritical Water Treatment
The process of the present invention is characterized by treating a plant material with supercritical water.
It is well known that substances can exist in three states:, as a solid, liquid or gas. If temperature and pressure are gradually increased, starting in a state in which a gas and a liquid mingle. When a certain pressure and a certain temperature (i.e., critical point) are exceeded, there exists a range in which the boundary surface between the gas and the liquid disappears, and the gas and liquid integrate as an inseparable entity, to form a fluid state. Such a fluid is called a supercritical fluid, which is a high-density fluid having properties intermediate between gas and liquid. That is, this fluid, like a liquid, dissolves various substances, and has high fluidity like a gas.
The critical point for water is a temperature of 374° C. and a pressure of 221 atmospheres. Supercritical water refers to water in a state at a temperature and a pressure in specific ranges exceeding this critical point. Supercritical water continuously varies in the values of parameters, such as density, viscosity, dielectric constant, ion product, and diffusion coefficient, depending on temperature and pressure. Solubility, an important parameter for a reaction solvent, is known to increase as density increases. Another factor related to solubility is dielectric constant, which increases with increasing density, and decreases as temperature rises. At a sufficiently high temperature, a dielectric constan
Arai Kunio
Fujii Takahisa
Miki Wataru
Nagami Kenzoh
Nakahara Koichi
Corbin Arthur L.
Manelli Denison & Selter PLLC
Suntory Limited
White, Jr. Paul E.
LandOfFree
Process for producing essential oil by subcritical or... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for producing essential oil by subcritical or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing essential oil by subcritical or... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2950514