Process for fabrication of 3-dimensional micromechanisms

Semiconductor device manufacturing: process – Making device or circuit responsive to nonelectrical signal – Physical stress responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S455000, C310S0400MM, C310S309000

Reexamination Certificate

active

06664126

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of micromechanisms. Particularly this invention pertains to the fabrication of 3-dimensional micromechanisms such as micromanipulators, microfluidic valves, actuators and end effectors for milli- and micro-robotic applications, precision data head manipulator for high density data storage, positioners for microphotonic systems, and other systems used in the field of micromechanisms.
More particularly, the present invention relates to a fabrication process for creating 3-dimensional micromechanisms in parallel fashion without need for post processing assembly.
Further, the present invention relates to the fabrication of 3-dimensional micromechanisms in which respective portions of a 3-dimensional micromechanism are created in separate wafers which are bonded together in sequence to form a final product (3-dimensional micromechanism) which may include variety of structural elements, such as: actuators, platforms, links, embedded joints coupled between the structural elements of the 3-dimensional micromechanisms such as linear sliders, ball-in-socket structures, overhanging or enclosed components, as well as other elements useful in this field.
Furthermore, the present invention relates to the fabrication of 3-dimensional micromechanisms based on thermally grown SiO
2
as a material for structural elements of the micromechanisms.
BACKGROUND OF THE INVENTION
As the miniaturization technology of complex engineering systems accelerates, the need for high-precision micromechanisms is becoming increasingly evident. For example, NASA predicts that the next generation of miniaturized spacecrafts will require micro-scale mechanisms for the deployment and manipulation of structures such as antennas, solar sails, and telescopes.
Such small-scale mechanisms will require dramatic reductions in size and weight over current technology. Typically, a Micro Electro Mechanical System (MEMS), such as a three-degree-of-freedom silicon-based platform manipulator, employs a combination of prismatic and pseudo-revolute kinematic pairs to achieve functionality. Micromanipulators include a moving platform, operatively connected to actuators through respective links. The moving platform and the actuators are coupled to the links through different joints. The controlled movement of the actuators is conveyed through the links to the moving platform and thus drives the platform in a predetermined direction through a predetermined distance. The dimensions of such a micromanipulator ranges from several microns to thousands of microns.
Silicon-based micromechanisms are manufactured using a variety of manufacturing techniques. Many of these technologies, such as LIGA, DRIE (deep reactive ion etching), and laser etching, result in simple extrusions of 2-dimensional planar structures. Some methods which are capable of generating true 3-dimensional microstructures, such as component bonding and hinged structure fabrication, require manual assembly and are not well suited for low-cost, mass-produced micromechanisms. Techniques such as micro stereo lithography and focused laser/ion beam deposition are not parallel processes and thus are not cost-effective technologies. In addition, many of these techniques, such as hinged structure fabrication, rely on thin film technology. and thus cannot produce mechanically-robust mechanisms capable of interfacing with macro-scale forces.
Existing 3-D micromachined structures may be loosely categorized as belonging to one of three groups: serially-processed microstructures, assembled microstructures, and parallel-processed microstructures.
Serially-processed microstructures, produced by techniques such as laser or focused ion beam etching and deposition, have been developed by leveraging from existing technologies used for performing modifications and corrections to fabricated VLSI (very large scale integration) circuits. Gas-assisted laser etching techniques used for high-aspect-ratio milling, and localized ion-beam-induced deposition has been demonstrated viable for 3D micromechanical structures. Other serial techniques based on non-IC processing have also been successfully used. As an example, stereo lithography systems, commercially applied to macro-scale desktop prototyping has recently been adapted to the microfabrication of polymer and plated metal structures with dimensions as low as 5 &mgr;m.
While these techniques offer significant design flexibility for producing arbitrary 3-D shapes on the microscale level, they must be fabricated one device at a time resulting in high manufacturing costs and limiting their application for mass-produced devices. Additionally, the range of dimensions (both in-plane and out-of-plane) which can be achieved by these techniques are limited by relatively slow processing speeds.
Assembled microstructures which employ parallel fabrication processes to form mechanical components to be later hand-assembled, have been successfully demonstrated. Simple pick-and-place of high-aspect-ratio electroplated microcomponents produced by LIGA methods has been used to produce a variety of 3-D structures with large x-y-z dimensional range. Bonding methods provide additional flexibility by allowing selected components to be “welded” into place after assembly. Hinged structures have proven very successful for a variety of applications.
An important capability of assembly processes is the potential for producing freestanding structures such as hub-and-axle assemblies. However, due to the nature of the assembly process, they cannot achieve complex structures such as ball-and-socket devices. Additionally, these methods require meticulous hand assembly of individual components, and as such are not considered truly parallel processes. The additional costs required for final assembly of these 3-D structures makes them prohibitively expensive for most applications.
Parallel processes offer great potential for low cost, mass-produced microstructures with 3-D geometries. Bulk-etched silicon devices fabricated using isotropic and anisotropic wet etchants together with etch-stop techniques have been thoroughly explored over in recent times. Bulk-etching techniques are capable of producing devices with large dimensional ranges, both in- and out-of the wafer plane, but are extremely limited in the types of geometries which can be achieved. Fabrication techniques capable of producing high-aspect-ratio structures, such as LIGA and deep-RIE of silicon are capable of generating arbitrary in-plane geometries however, out-of-plane dimensions are limited to simple extrusions of the in-plane structures.
Thus although significant progress has been made in fabrication of planar micromachined mechanisms, current manufacturing technology still results in fragile structures which cannot survive typical macro-scale loading conditions. There remains a strong need for fabrication technology capable of producing fully 3-dimensional micromechanisms which are mechanically robust enough to couple macro-scale forces and disturbances with precise micro-scale motions.
The ability to produce true 3-dimensional micromechanisms in a parallel fabrication technology while eliminating the post-processing assembly is a long standing need in the art.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a fully parallel process which permits production of true 3-dimensional micromechanisms of nearly arbitrary in plane and out-of-plane shapes.
It is another object of the present invention to provide a process for 3-dimensional microstructures manufacturing which does not need a post-processing assembly, thus enabling the development of extremely complex 3-D micromechanisms in a relatively low-cost, high volume and less time consuming fashion.
It is a further object of the present invention to provide parallel microfabrication technology for producing silicon based 3-dimensional Micro-Electro-Mechanical Systems (3DMEMS's) capable of achieving out-of-wafer dimensions much larger than traditional surfa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for fabrication of 3-dimensional micromechanisms does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for fabrication of 3-dimensional micromechanisms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for fabrication of 3-dimensional micromechanisms will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3170055

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.