Process for fabricating three-dimensional polymer layer...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Forming nonplanar surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S330000, C250S492300

Reexamination Certificate

active

06291139

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to fabrication of formed polymer layers, structured in three dimensions, and, in particular, to fabrication of optical lenses.
RELATED TECHNOLOGY
Lenses are used in integrated optics, in particular, for coupling optical lasers to optical fibers.
One known method for coupling lasers and fibers using lithographic processes discloses installing taper couplers along with a laser when it is assembled in an indium phosphide base material. See
1.) R. Zengerle, H. J. Brückner, H. W. P. Koops, H.-J. Olzhausen, G. Zesch, A. Kohl, A. Menschig, “Fabrication of Optical Beamwidth Transformers for Guided Waves on InP Using Wedge-Shaped Tapers”, J. Vac. Sci. Technol. B 9 (6) (1991) 3459.
Curved interfaces, such as cylindrical lenses, which are directly contiguous to the laser and have a focusing effect in one sectional plane, may be defined by means of nanolithography using corpuscular beam lithography and dry-etched by means of reactive dry-etching in additional process steps. See
2.) Unger, V. Boegli, P. Buchmann, R. Germann, “High Resolution Electron Beam Lithography for Fabricating Visible Semiconductor Lasers with Curved Mirrors and Integrated Holograms”, Microelectronic Eng. 23, (1994) 461. Glass spheres may be micromechanically adjusted and bonded to flash-etched glass fibers. The glass spheres may optically adapt in both directions, with rotational symmetry, the emission profile of the glass fibers. See
3.) R. H. Bellmann, N. F. Borelli, J. Dafin, L. G. Mann, B. H. Raeder, “Precision Glass Microlens Array by a Photo-Thermnal Technique”, SPIE O-E Lase 88, (Jan.14, 1988).
By fusing the fibers and rounding them off in a thermal process, as well as by means of laser ablation or mechanical polishing, round end profiles can be produced on the fiber ends.
Glass members may be produced as separate structural components having suitable curvature at the ends. The glass members may be inserted as interposed lenses into the optical transmission channel to achieve the desired coupling objective. Adjustment to submicrometer precision can constitute a problem See
4.) SMILE lenses produced by CORNING, France.
5.) GRIN lenses produced by NIPPON SHEET GLASS, Japan, NSG-Selfog Product Guide, NSG America Inc., Somerset, N.J. 08873.
Known methods do not teach using three-dimensional patterned polymer layers as refractive lenses in integrated optics. See
6.) R. Dändliker, R. Völkel, H. P. Herzig, W. B. Hugle, “Photolithography with Lenslet Arrays”, IG-Fachbericht 132 “Vacuum Electronics and Displays”, (1995) 241;
7.) A. Stemmer, H. Zarschizky, F Mayerhofer, G. Lefranc, H. W. Schneider, P. Galloway, SPIE, vol. 1732, Holographics International, 92, 77;
8.) A. Stemmer, H. Zarschizky, E. Knapek, G. Lefranc, H. Scherer-Winner, “Design and Fabrication of Multilevel Diffractive Optical Elements (DOES) and Holographic Optical Elements (HOEs)”, Microelectronic Engineering, vol. 21, no. 1-4, (1993) 471-474;
9.) C. Dix, P. F. McKee, A. R. Thurlow, J. R. Towers, D. C. Wood, N. J. Dawes, J. T. Whitney, “Electron-Bearn Fabrication and Focused Ion-Beam Inspection of Submicron Structured Diffractive Optical Elements”, J. Vac. Sci. Technol. B 12(6) (1994) 3708-37011; and
10.) P. D. Maker, R. E. Müller, “Phase holograms in polymethylmethacrylate” , J. Vac. Sci. Technol. B 10(6) (1992) 2516.
Attempts have also been made in gas-discharging processes to produce electron-sensitive polymerizates, useful applications of which remains to be determined. See
11.) O. Joubert, T. Weidmami, A. Joshi, R. Cirelli, S. Stein, J. T. C. Lee, S. Vaidya, “Plasma Polymerized All-Dry Resist Process for 0.25 &mgr;m Photolithography”, J. Vac. Technol. B 12(6) (1994) 3909.
At the Techno Center in Moscow, a substance has been synthesized as dry resist for corpuscular beam and optical lithography. This substance works with a sensitivity similar to that of the known electron resist PMMA (polymethacrylate). This resist, which has a resolution capability that is suitable for lithography, is vapor-deposited and dry-developed under a vacuum. Because there is no need for wet process steps, the resist is very environmentally clean. See
12.) S. V. Babin, A. l. Holopkin, M. N. Lyakhov, K. A. Valiev, L. V. Velikov, E. N. Zhikharev, Microcircuit Engineering 23 (1994) 303; and
13.) V. P. Karchkov, T. N. Martynova, V. S. Damlovich, Thin Solid Films 4 (1983) 3696
When corpuscular beam-induced deposition is used, it is possible to locally convert monomers, adsorbed from the gas phase, into polymers. This process does not require any development when producing three-dimensional polymer structures. See
14.) H. W. P. Koops, R. Weiel, D. P. Kern, T. H. Baum, “High Resolution Electron Beam Induced Deposition”, Proc. 31. Int. Symp. on Electron, Ion and Photon Beams, J. Vac. Sci. Technol. B 6 (1) (1988) 477.
SUMMARY OF THE INVENTION
The process of the present invention is based on using a polymerizable dry resist and on the selective exposure of dry resist areas, preferably with the inclusion of the corpuscular beam-induced deposition process.
Octavinylsilsesquioxane dry resist that is polymerizable using photon or corpuscular beams is particularly suitable for use as a dry resist.
In accordance with the present invention, the polymerizable dry resist is applied to the end surface of an optical structure and irradiated in one region which corresponds to the form of the desired optical lens. The region to be irradiated is preferably defined through the use of imnage-processing methods. In this way structure region precalculated for the lens is defined with submicrometer precision. This region undergoes a controlled irradiation process. The irradiation parameters necessary for the irradiation process, ie., those required to apportion the dosed radiation as a function of space and time, are determnined on the basis of the desired lens form. The irradiation process is then carried out automatically using computerized control processes.
The lens-shaped structure region polymerized by the irradiation is subsequently removed from the unexposed dry resist.
Methods for removing the polymerized structure region include the following:
1. The lens-shaped structure region polymerized through exposure is removed from the dry resist using physical development, such as heating under a high vacuum;
2. The lens-shaped structure region polymerized through exposure is removed from the dry resist using physical development, such as heating by air; and
3. The lens-shaped structure region polymerized through exposure is removed from the dry resist using dry-chemical development, such as processing in a gas discharge.
One embodiment of the present invention comprises applying, prior to exposure, the polymerizable dry resist used as starting substance to the three-dimensional, optical lens surface. This embodiment is especially advantageous when working with optical fibers or laser light sources whose optical output faces are to be adapted to curved ray paths.
The process of the present invention makes it possible to produce miniaturized, refractive lenses having a spherical or a non-spherical geometry. By selecting different profiles in various spatial directions, the beam characteristic of a given optional fiber or laser can be accurately corrected. The emissivity or acceptance characteristic can be adjusted to a rotationally symmetric profile or to a previously defined profile. In the same way, prisms and beam splitters can be directly produced. These components are removed from the resist using dry-chemical development, eg.; precipitation of organic compounds.
This technique can also be used to produce lens arrays on surfaces for use in the parallel, optical focusing of a plurality of pixels in an array pattern. Such focusing may be required for enhancing the sensitivity of optical detectors, flat TV cameras or diode arrays. The process is also suited for producing aspherical surfaces having complex sectional curves. The invention makes is possible to center the desired elements with submicrometer precision to the necessary application sit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for fabricating three-dimensional polymer layer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for fabricating three-dimensional polymer layer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for fabricating three-dimensional polymer layer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2515465

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.