Pass-gate inputs that temporarily hold state on a high input...

Electrical computers and digital processing systems: support – Synchronization of clock or timing signals – data – or pulses

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S600000

Reexamination Certificate

active

06367025

ABSTRACT:

BACKGROUND OF THE INVENTION
Generally speaking, computer systems typically include one or more central processor units (CPUs). Each CPU includes many signal paths that convey data between functional units that operate on that data. Such data is typically conveyed using a transfer cycle having a specified timing structure. That timing structure dictates a time period when the data to be transferred will be valid. Accordingly, the data is captured while it is valid and held for a specified amount of time. Such data capture can be performed using a number of edge triggered latches.
Within a CPU, edge triggered latches are commonly implemented using a circuit referred to as a “sense amplifier”. Sense amplifiers are designed to sense the logic level of a data signal and to output a latched version of that logic level. Because the above mentioned time period is typically specified with respect to a particular clock cycle, an edge triggered latch typically samples or “senses” the data on the rising edge of that clock cycle. The data is latched, i.e. held at the output of the sense amplifier, until the falling edge of that clock cycle or until the rising edge of the next clock cycle, depending upon its design. Until the next rising edge of the clock, new data can be asserted on the signal line without affecting the latched data.
An ideal sense amplifier would latch the data immediately upon the rising edge of the associated clock cycle. In practice, however, the latching operation occurs over a finite amount of time during which the data must remain stable. That finite amount of time is defined by “data set-up” and “data hold” timing requirements. Accordingly, the data signal presented to the sense amplifier must satisfy the data set-up and data hold timing requirements in order for the associated logic levels to be properly latched.
The data set-up timing requirement refers to the amount of time that the data must remain stable before the sense amplifier latches it. The data set-up time is typically specified in relation to the rising edge of the above mentioned clock cycle. The data hold timing requirement refers to the amount of time that the data signal must remain stable after the rising edge of that clock cycle.
Prior art sense amplifiers have demonstrated a reduction, or improvement, in the data hold timing requirement at the expense of significantly increased data set-up timing requirements. Accordingly, while the data hold timing requirement has been improved, the overall access cycle time for the sense amplifier is effectively unchanged. Therefore, the rate at which data can be presented to the sense amplifier is also unchanged and, hence, performance is not improved.
SUMMARY OF THE INVENTION
The sense amplifier of the present invention provides a considerable reduction of the data hold timing requirement without a concomitant increase in the data set-up timing requirement. Accordingly, the overall access time for that sense amplifier is significantly improved, thereby increasing the rate at which data can be presented to the sense amplifier.
More specifically, a method and apparatus are provided for improving the data hold timing requirement of the sense amplifier by coupling a pass-gate to each of its data input ports. Each pass-gate receives a logic level that has developed on an input data signal. When the data is valid, a control signal is asserted that causes the pass-gate to latch the logic level at the input of the sense amplifier. While that logic level is latched, the sense amplifier can generate a corresponding latched output signal and the data signal can transition to a new logic level. Therefore, the pass-gate maintains the logic level at the input of the sense amplifier for the duration of the data hold timing requirement.
The pass-gate can be a level-sensitive latch that latches said first logic level in response to the assertion level of the control signal. It includes a first transistor having a drain terminal connected to the data signal, a source terminal connected to the sense amplifier and a gate terminal connected to the control signal. That transistor can be a PMOS or NMOS transistor.
Also, the pass-gate can include a second transistor that is connected in parallel with the first transistor. That second transistor can be the opposite type of transistor (NMOS or PMOS) as the first transistor.


REFERENCES:
patent: 4910713 (1990-03-01), Madden et al.
patent: 5355340 (1994-10-01), Coker et al.
patent: 5963060 (1999-10-01), Varadarajan et al.
patent: 5963485 (1999-10-01), Brady et al.
patent: 5986917 (1999-11-01), Lee
Jiang, June et al., “High-Performance, Low-Power Design Techniques for Dynamic to Static Logic Interface,” Proceedings 1997 International Symposium on Low Power Electronics and Design, Monterey, CA, Aug. 18-20, 1997, pp. 12-17.
Chuang, Ching-Te et al. “SOI for Digital CMOS VLSI: Design Considerations and Advances,” Proceedings of the IEEE, 86(4): 689-720 (Apr. 1998).
Glasser, Lance A., and Dobberpuhl, Daniel W., “The Design and Analysis of VLSI Circuits,” (MA: Addison13Wesley Publishing), pp. 286-289 (1985).
Matson, M. et al., “A 600MHz Superscalar Floating Point Processor,” Paper on EV6 Fbox given at European Solid-State Circuits Conference, (Sep. 1998).
Montanaro, James et al., “A 160-MHZ, 32-b, 0.5-W CMOS RISC Microprocessor,” IEEE Journal of Solid-State Circuits, 31(11) 1703-1714 (Nov. 1996).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pass-gate inputs that temporarily hold state on a high input... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pass-gate inputs that temporarily hold state on a high input..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pass-gate inputs that temporarily hold state on a high input... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2870101

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.