Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate
Reexamination Certificate
2006-01-03
2006-01-03
Fourson, George (Department: 2823)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having insulated gate
Reexamination Certificate
active
06982204
ABSTRACT:
Contacts for a nitride based transistor and methods of fabricating such contacts provide a recess through a regrowth process. The contacts are formed in the recess. The regrowth process includes fabricating a first cap layer comprising a Group III-nitride semiconductor material. A mask is fabricated and patterned on the first cap layer. The pattern of the mask corresponds to the pattern of the recesses for the contacts. A second cap layer comprising a Group III-nitride semiconductor material is selectively fabricated (e.g. grown) on the first cap layer utilizing the patterned mask. Additional layers may also be formed on the second cap layer. The mask may be removed to provide recess(es) to the first cap layer, and contact(s) may be formed in the recess(es). Alternatively, the mask may comprise a conductive material upon which a contact may be formed, and may not require removal.
REFERENCES:
patent: 4424525 (1984-01-01), Mimura
patent: 4471366 (1984-09-01), Delagebeaudeuf et al.
patent: 4727403 (1988-02-01), Hilda et al.
patent: 4755867 (1988-07-01), Cheng
patent: 4788156 (1988-11-01), Stoneham et al.
patent: 4946547 (1990-08-01), Palmour et al.
patent: 5053348 (1991-10-01), Mishra et al.
patent: 5172197 (1992-12-01), Nguyen et al.
patent: 5192987 (1993-03-01), Khan et al.
patent: 5200022 (1993-04-01), Kong et al.
patent: 5210051 (1993-05-01), Carter, Jr.
patent: 5292501 (1994-03-01), Degenhardt et al.
patent: 5296395 (1994-03-01), Khan et al.
patent: 5298445 (1994-03-01), Asano
patent: RE34861 (1995-02-01), Davis et al.
patent: 5393993 (1995-02-01), Edmond et al.
patent: 5523589 (1996-06-01), Edmond et al.
patent: 5534462 (1996-07-01), Fiordalice et al.
patent: 5592501 (1997-01-01), Edmond et al.
patent: 5686737 (1997-11-01), Allen
patent: 5700714 (1997-12-01), Ogihara et al.
patent: 5701019 (1997-12-01), Matsumoto et al.
patent: 5705827 (1998-01-01), Baba et al.
patent: 5804482 (1998-09-01), Konstantinov et al.
patent: 5885860 (1999-03-01), Weitzel et al.
patent: 6028328 (2000-02-01), Riechert et al.
patent: 6046464 (2000-04-01), Schetzina
patent: 6064082 (2000-05-01), Kawai et al.
patent: 6086673 (2000-07-01), Molnar
patent: 6150680 (2000-11-01), Eastman et al.
patent: 6177685 (2001-01-01), Teraguchi et al.
patent: 6218680 (2001-04-01), Carter, Jr. et al.
patent: 6316793 (2001-11-01), Sheppard et al.
patent: 6429467 (2002-08-01), Ando
patent: 6448648 (2002-09-01), Boos
patent: 6492669 (2002-12-01), Nakayama et al.
patent: 6515316 (2003-02-01), Wojtowicz
patent: 6548333 (2003-04-01), Smith
patent: 6586781 (2003-07-01), Wu et al.
patent: 6639255 (2003-10-01), Inoue et al.
patent: 2001/0015446 (2001-08-01), Inoue et al.
patent: 2001/0020700 (2001-09-01), Inoue et al.
patent: 2001/0023964 (2001-09-01), Wu et al.
patent: 2001/0040246 (2001-11-01), Ishii
patent: 2002/0008241 (2002-01-01), Edmond et al.
patent: 2002/0017696 (2002-02-01), Nakayama et al.
patent: 2002/0066908 (2002-06-01), Smith
patent: 2002/0119610 (2002-08-01), Nishii et al.
patent: 2002/0167023 (2002-11-01), Chavarkar et al.
patent: 2003/0017683 (2003-01-01), Emrick et al.
patent: 2003/0020092 (2003-01-01), Parikh et al.
patent: 2003/0102482 (2003-06-01), Saxler
patent: 2003/0123829 (2003-07-01), Taylor
patent: 2003/0157776 (2003-08-01), Smith
patent: 2003/0213975 (2003-11-01), Hirose et al.
patent: 2004/0004223 (2004-01-01), Nagahama et al.
patent: 2004/0021152 (2004-02-01), Nguyen et al.
patent: 2004/0029330 (2004-02-01), Hussain et al.
patent: 2004/0241970 (2004-12-01), Ring
patent: 0 334 006 (1989-09-01), None
patent: 0 563 847 (1993-10-01), None
patent: 10-050982 (1998-02-01), None
patent: 11261053 (1999-09-01), None
patent: 02001230407 (2001-08-01), None
patent: 02002016087 (2002-01-01), None
patent: 2004-342810 (2004-12-01), None
patent: WO 93/23877 (1993-11-01), None
patent: WO 01/57929 (2001-08-01), None
patent: WO 02/48434 (2002-06-01), None
patent: WO03/049193 (2003-06-01), None
patent: WO 04/008495 (2004-01-01), None
Ben-Yaacov et al., “AlGaN/GaN Current Aperture Vertical Electron Transistors with Regrown Channels,”Journal of Applied Physics. vol. 95, No. 4, pp. 2073-2078 (2004).
Burm et al. “Ultra-Low Resistive Ohmic Contacts on n-GaN Using Si Implantation,”Applied Physics Letters. vol. 70, No. 4, 464-66 (1997).
Heikman, et al., “Mass Transport Regrowth of GaN for Ohmic Contacts to AlGaN/GaN,”Applied Physics Letters. vol. 78, No. 19, pp. 2876.
Shen et al., “High-Power Polarization-Engineered GaN/AlGaN/GaN HEMTs Without Surface Passivation,”IEEE Electronics Device Letters. vol. 25, No. 1, pp. 7-9 (2004).
United States Patent Application entitled “Co-Doping for Fermi Level Control in Semi-Insulating Group III Nitrides,” filed Jan. 7, 2004.
United States Patent Application entitled “Nitride Heterojunction Transistors Having Charge-Transfer Induced Energy Barriers and Methods of Fabricating the Same,” U.S. Appl. No. 10/772,882, filed Feb. 5, 2004.
United States Patent Application entitled “Semiconductor Devices Having a Hybrid Channel Layer, Current Aperture Transistors and Methods of Fabricating the Same,” U.S. Appl. No. 10/849,589, filed May 20, 2004.
United States Patent Application entitled “Methods of Fabricating Nitride-Based Transistors Having Regrown Ohmic Contact Regions and Nitride-Based Transistors Having Regrown Ohmic Contact Regions,” U.S. Appl. No. 10/849,617, filed May 20, 2004.
United States Patent Application entitled “Methods of Fabricating Nitride-Based Transistors with a Cap Layer and a Recessed Gate,” filed Jul. 23, 2004.
United States Patent Application entitled “Methods of Having Laterally Grown Active Region and Methods of Fabricating Same,” filed Jul. 26, 2004.
United States Patent Application entitled, “Silicon Carbide on Diamond Substrates and Related Devices and Methods,”.
Heikman et al., “Polarization Effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures”, Journal of Applied Physics, vol. 93, No. 12, Jun. 15, 2003, pp. 10114-10118.
Karmalkar et al., Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate, IEEE Transactions on Electron Devices, vol. 48, No. 8, Aug. 2001.
Karmalkar et al., “Resurf AlGaN/GaN HEMT for High Voltage Power Switching”,IEEE Electron Device Letters, vol. 22, No. 8, Aug. 2001, pp. 373-375.
Kuzmik et al. “Annealing of Schottky contacts deposited on dry etched AlGaN/GaN,”Semiconductor Science and Technology. vol. 17, No. 11, Nov. 2002.
Neuburger et al. “Design of GaN-based Field Effect Transistor Structures based on Doping Screening of Polarization Fields,” WA 1.5, 7th Wide-Bandgap III-Nitride Workshop, Mar. 2002.
Sriram et al. “RF Performance of AlGaN/GaN MODFET's on High Resistivity SiC Substrates,” Presentation at Materials Research Society Fall Symposium, 1997.
Sriram et al. “SiC and GaN Wide Bandgap Microwave Power Transistors,”IEEE Sarnoff Symposium, Mar. 18, 1998.
Wu et al., “30-W/mm AlGaN/GaN HEMTs by Field Plate Optimization”,IEEE Electron Device Letters, Published 2004.
Breitschadel et al., “Minimization of Leakage Current of Recessed Gate AlGaN/GaN HEMTs by Optimizing the Dry-Etching Process”, Journal of Electronic Materials, vol. 28, No. 12, 1999.
Burm et al., “Recessed Gate GaN MODFETS”, Solid State Electronics, vol. 41, No. 2, pp. 247-250, 1997.
Chen et al., “Reactive ion etching for gate recessing of AlGaN/GaN Field-effect transistors”, J. Vac. Sci. Technol. B 17(6), Nov./Dec. 1999.
Heikman, Sten J.,MOCVD Growth Technologies for Applications in AlGaN/GaN High Electron Mobility Transistors, Dissertation, University of California—Santa Barbara, Sep. 2002, 190 pages.
Chu et al., “GaN materials for high power microwave amplifiers,” Mat Res. Soc. Symp. Proc., vol. 512 (1998).
Eastman et al., “Undoped AlGaN/GaN HEMTs for Microwave Power Amplification, ”IEEE Transactions on Ele
Saxler Adam William
Sheppard Scott T.
Smith Richard Peter
Cree Inc.
Fourson George
Myers Bigel & Sibley & Sajovec
Toledo Fernando L.
LandOfFree
Nitride-based transistors and methods of fabrication thereof... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nitride-based transistors and methods of fabrication thereof..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nitride-based transistors and methods of fabrication thereof... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3588450