Active solid-state devices (e.g. – transistors – solid-state diode – Responsive to non-electrical signal – Physical deformation
Reexamination Certificate
2006-03-21
2009-11-03
Nguyen, Dao H (Department: 2818)
Active solid-state devices (e.g., transistors, solid-state diode
Responsive to non-electrical signal
Physical deformation
C257S419000, C257S421000, C257S595000, C257SE29344, C257SE29345, C200S181000, C361S278000, C361S290000, C361S298500
Reexamination Certificate
active
07612424
ABSTRACT:
Nano-electromechanical device having an electrically conductive nano-cantilever wherein the nano-cantilever has a free end that is movable relative to an electrically conductive substrate such as an electrode of a circuit. The circuit includes a power source connected to the electrode and to the nano-cantilever for providing a pull-in or pull-out voltage therebetween to effect bending movement of the nano-cantilever relative to the electrode. Feedback control is provided for varying the voltage between the electrode and the nano-cantilever in response to the position of the cantilever relative to the electrode. The device provides two stable positions of the nano-cantilever and a hysteresis loop in the current-voltage space between the pull-in voltage and the pull-out voltage. A first stable position of the nano-cantilever is provided at sub-nanometer gap between the free end of the nano-cantilever and the electrode with a pull-in voltage applied and with a stable tunneling electrical current present in the circuit. A second stable position of the nano-cantilever is provided with a pull-out voltage between the cantilever and the electrode with little or no tunneling electrical current present in the circuit. The nano-electromechanical device can be used in a scanning probe microscope, ultrasonic wave detection sensor, NEMS switch, random access memory element, gap sensor, logic device, and a bio-sensor when the nano-cantilever is functionalized with biomolecules that interact with species present in the ambient environment be them in air or aqueous solutions. In the latest case, the NEMS needs to be integrated with a microfluidic system.
REFERENCES:
patent: 5677823 (1997-10-01), Smith
patent: 6574130 (2003-06-01), Segal et al.
patent: 6643165 (2003-11-01), Segal et al.
patent: 6781166 (2004-08-01), Lieber et al.
patent: 6798321 (2004-09-01), Hallbjorner
patent: 6836424 (2004-12-01), Segal et al.
patent: 2002/0130353 (2002-09-01), Lieber et al.
patent: 2003/0089899 (2003-05-01), Lieber et al.
patent: 2003/0165074 (2003-09-01), Segal et al.
patent: 2003/0200521 (2003-10-01), DeHon et al.
patent: 2004/0027889 (2004-02-01), Occhipinti et al.
patent: 2004/0188721 (2004-09-01), Lieber et al.
patent: 2004/0214366 (2004-10-01), Segal et al.
patent: 2004/0214367 (2004-10-01), Segal et al.
patent: 2006/0086994 (2006-04-01), Viefers et al.
Y.T. Yang, K.L. Ekinci, X.M.H. Huang, L.M. Schiavone, M.L. Roukes, C.A. Zorman, and M. Mehregany, “Monocrytalline silicon carbide nanoelectromechanical systems,” Appl. Phys. Lett. 78, 162, 2001.
A.N. Cleland and M.L. Roukes, “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Appl. Phys. Lett. 69, 2653, 1996.
A. Erbe, R.H. Blick, A. Tilke, A. Kriele, P.Kotthaus, “A mechanically flexible tunneling contact operating at radio frequencies”, Appl. Phys. Lett. 73, 3751, 1998.
X.M.H. Huang, C.A. Zorman, M. Mehregany M.L. Roukes, “Nanodevice motion at microwave frequencies,” Nature(London) 421, 496, 2003.
M.L. Rhodes, “Nanoelectromechanical Systems,”, Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop, 2000.
G. Abadal,et al., “Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection,” Nanotechnology 12, 100, 2001.
A.N. Cleland, M.L. Roukes, “A Nanometer-scale Mechanical Electrometer,” Nature(London)392, pp. 160-162, 1998.
R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors,” Appl. Phys. Lett. 73, 2447, 1998.
S. Akita, Y. Nakayama, S. Mizooka, Y. Takano, T. Okawa, Y. Miyatake, S. Yamanaka, M. Tsuji, T. Nosaka, “Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope,” Appl. Phys. Lett., vol. 79, pp. 1691-1693, 2001.
P. Kim, C.M. Lieber, “Nanotube Nanotweezers,” Science, vol. 126 pp. 2148-2150, 1999.
T. Rueckes, K. Kim, E. Joslevich, G.Y. Tseng, C. Cheung, C.M. Lieber, “Carbon nanotube-based nonvolatile random access memory for molecular computing”, Science, vol. 289, pp. 94-97, 2000.
J. Kinaret, T. Nord, S. Viefers, “A Carbon-nanotube-based nanorelay,” Appl. Phys. Lett., vol. 82, pp. 1287-1289, 2003.
A.M. Fennimore, et al., “Rotational actuator based on carbon nanotubes,” Nature(London), vol. 424, pp. 408-410, 2003.
Dequesnes, et al., “Calculation of Pull-In Votages for Carbon-Nanotube-Based Nanoelectromechanical Switches”, Nanotechnology13, pp. 120-131, 2002.
M.M.J. Treacy, T.W. Ebbesen, J.M. Gilbson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature(London)381, 678, 1996.
R.J. Chen, et al., “An Investigation of the Mechanisms of Electronic Sensing of Protein Adsorption on Carbon Nanotube Devices”, J. Am. Chem. Soc., 126, 1563, 2004.
K.H. Kim, N. Moldovan, C. Ke, H.D. Espinosa, “A Novel AFM Chip for Fountain Pen Nanolithography-Design and Microfabrication,” Materials Research Society Symposium Proceedings, vol. 782, 2003 Fall MRS Meeting, A5.56.1, 2004.
K.H. Kim, N. Moldovan, H.D. Espinosa, “A Nanofountain Probe with Sub-100 nm Molecular Writing Resolution,” Small, vol. 1, No. 6, pp. 632-635, 2005.
C.-H. Ke, N. Pugno, B. Peng, H.D. Espinosa, “Experiments and Modeling of Carbon-Nanotube Based NEMS Devices”, J. Mech. Phys. Solids, 53 (6), pp. 1314-1333, 2005.
C.-H. Ke, H.D. Espinosa, “Feedback Controlled Nanocantilever Device”, Appl. Phys. Lett., vol. 85, No. 4, 2004, pp. 681-683.
L.M. Jonsson, T. Nord, J.M. Kinaret, S. Viefers, “Effects of Surface Forces and Phonon Dissipation in a Three-Terminal Nanorelay”, J. Appl. Phys., vol. 96, pp. 629-635, 2004.
R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, E.Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev.B 64, 195412, 2001.
J. Sun, Z.X. Zhang, S.M.Hou, G.M. Zhang, Z.N. Gu, X.Y. Zhao, W.M. Liu, Z.Q. Zue, “Work function of single-walled carbon nanotubes determined by field emission microscopy,” Appl.Phys. A: Mater. Sci. Process. 75, 479, 2002.
S. Frank, P. Poncharal, P. Wang, W.A. Heer, “Carbon Nanotube Quantum Resistors”, Science 280, 1744, 1998.
A. Bachtold, et al., “Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes”, Phys. Rev. Lett. 84, 6082, 2000.
A. Bachtold, C. Strunk, J.P. Salvetat, J.M. Bonard, L. Forro, T. Nussbaumer, C. Schonenberger, “Aharonov-Bohm oscillations in carbon nanotubes”, Nature(London)397, 673, 1999.
C. Schöneneberger, A. Bachtold, C. Strunk, J.P. Salvetat, L. Forro, “Interference and Interaction in multi-wall carbon nanotubes”, Appl. Phys. A: Mater. Sci. Process. 69, 283, 1999.
P.L. McEuen, M. Bockrath, D.H. Cobden, Y.G. Yoon, S.G. Louie, “Disorder, Pseudospins, and Backscattering in Carbon Nanotubes”, Phys. Rev. Lett. 83, 5098, 1999.
P.A. Williams, S.J. Papadakis, M.R. Falvo, “Fabrication of nanometer-scale mechanical devices incorporating individual multiwalled carbon nanotubes as torsional springs,” Appl. Phys. Lett., 82, 805, 2003.
M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, “Strength and Breaking Mechanism of Mulitwalled Carbon Nanotubes Under Tensile Load”, Science 287, 637, 2000.
Y.G. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y.M. Li, N. Morris, E. Yenilmez, J. Kong, H.J. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotubes”, Appl. Phys. Lett. 79, 3155, 2001.
K. Yamamoto, S. Akita, Y. Nakayama, “Orientation and purification of carbon nanotubes using ac electrophoresis”, J. Phys. D 31, L34, 1998.
A. Bezryadin, C. Dekker, “Electrostatic trapping of single conducting nanoparticles between nanoelectrodes”, Appl. Phys. Lett. 71, 1273. 1997.
Espinosa Horacio D.
Ke Changhong
Nguyen Dao H
Northwestern University
LandOfFree
Nanoelectromechanical bistable cantilever device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nanoelectromechanical bistable cantilever device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nanoelectromechanical bistable cantilever device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4128558