Multichip assembly semiconductor

Active solid-state devices (e.g. – transistors – solid-state diode – Lead frame

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S676000, C257S778000, C257S724000

Reexamination Certificate

active

06316822

ABSTRACT:

The present invention is related in general to the field of semiconductor devices and processes, and more specifically to assembly methods for integrated circuit chips resulting in multichip devices in a single package, having advanced performance characteristics yet fast turn-around development times.
BACKGROUND OF THE INVENTION
It is advantageous for many applications of semiconductor devices to arrange the needed devices in close proximity, even in a cluster. When only two, or few more, semiconductor chips are needed, various arrangements have been proposed in order to achieve the desired proximity, and to enable a minimization of required space. Typically, these arrangements are assemblies of semiconductor chips on a substrate, with or without a specific encapsulation. For these arrangements, the term “multichip module” is commonly used. For an encapsulated assembly, the term “multichip package” has been introduced. For many years, there has been a rather limited market for multichip modules and multichip packages, but driven by the rapidly expanding penetration of integrated circuit applications, this market is recently growing significantly in size. In order to participate in this market, though, the multichip products have to meet several conditions.
The multichip product has to offer the customer performance characteristics not available in single-chip products. This means, the multichip product has to leapfrog the development of single-chip product.
The multichip product has to be available to the customer at short notice. This means, the multichip product should use readily available components and fabrication methods.
The multichip product has to offer the customer a cost advantage. This means, the design and fabrication of the multichip product has to avoid unconventional or additional process steps.
The multichip product has to offer low cost-of-ownership. This means, it has to operate reliably based on built-in reliability.
Numerous multichip packages have been described in publications and patents. For instance, U.S. Pat. No. 4,862,322, Aug. 29, 1989 (Bickford et al.) entitled “Double Electronic Device Structure having Beam Leads Solderlessly Bonded between Contact Locations on each Device and Projecting Outwardly from Therebetween” describes a structure of two chips facing each other, in which the input/output terminals are bonded by beam leads. The high cost, however, of materials, processing and controls never allowed the beam lead technology to become a mainstream fabrication method.
In U.S. Pat. No. 5,331,235, Jul. 19, 1994 (H. S. Chun) entitled “Multi-Chip Semiconductor Package”, tape-automated bonding plastic tapes are used to interconnect two chips of identical types, facing each other, into pairs. One or more of these pairs are then assembled into an encapsulating package, in which the plastic tapes are connected to metallic leads reaching outside of the package to form the leads or pins for surface mount and board attach. The high cost of the plastic tapes and the lack of batch processing kept the technology of tape-automated bonding at the margins of the semiconductor production.
Several proposals have been made of multichip devices in which two or more chips are arranged side by side, attached to a supporting substrate or to leadframe pads. An example is U.S. Pat. No. 5,352,632, Oct. 4, 1994 (H. Sawaya) entitled “Multichip Packaged Semiconductor Device and Method for Manufacturing the Same”. The chips, usually of different types, are first interconnected by flexible resin tapes and then sealed into a resin package. The tapes are attached to metallic leads which also protrude from the package for conventional surface mounting. Another example is U.S. Pat. No. 5,373,188, Dec. 13, 1994 (Michii et al.) entitled “Packaged Semiconductor Device including Multiple Semiconductor Chips and Cross-over Lead”. The chips, usually of different types, are attached to leadframe chip pads; their input/output terminals are wire bonded to the inner lead of the leadframe. In addition, other leads are used under or over the semiconductor chips in order to interconnect terminals which cannot be reached by long-spanned wire bonding. Finally, the assembly is encapsulated in a plastic package. In both of these examples, the end products are large, since the chips are placed side by side. In contrast, today's applications require ever shrinking semiconductor products, and board consumption is to be minimized.
U.S. Pat. No. 5,438,224, Aug. 1, 1995 (Papageorge et al.) entitled “Integrated Circuit Package having a Face-to-Face IC Chip Arrangement” discloses an integrated circuit (IC) package with a stacked IC chip arrangement placed on a circuit substrate. Two chips are positioned face to face, with a substrate made of tape-automated bonding tape or flex circuit interposed between the chips to provide electrical connection among the terminals of the flip chip and external circuitry; a separate mechanical support is needed for the assembly. in addition to this cost, fabrication is difficult due to the lack of rigid support for the chips.
U.S. Pat. No. 5,770,480, Jun. 23, 1998 (Ma et al.) entitled “Method of Leads between Chips Assembly” increases the IC density by teaching the use of leadframe fingers to attach to the bond pads of multiple chips employing solder or conductive bumps. While in the preferred embodiments both chips of a set are identical in function, the method extends also to chips with differing bond pad arrangements, In this case, however, the leadframe needs customized configuration and non-uniform lengths of the lead fingers, especially since the use of bond wires is excluded. The manufacture of these so-called variable-leads-between-chips involves costly leadframe fabrication equipment and techniques. In addition, a passivation layer is required, to be disposed between the two chips and the customized lead fingers, in order to prevent potential electrical shorts, adding more material and processing costs.
An urgent need has therefore arisen for a coherent, low-cost method of fabricating multichip packages based on available chip designs and assembly and encapsulation techniques. The method should be flexible enough to be applied for different semiconductor product families and a wide spectrum of design and process variations, should add no additional cost to the existing fabrication methods, and deliver high-quality and high-reliability products. Preferably, these innovations should be accomplished while shortening production cycle time and increasing throughput.
SUMMARY OF THE INVENTION
The present innovation provides a method for increasing integrated circuit density and creating novel performance characteristics. The multichip device comprises a stack of typically two semiconductor chips with a leadframe including a plurality of leads disposed between the chips. The device is produced by connecting each of the chip contact pads to one of the leads, respectively, whereby the connections to at least one of the leads are common between the first and second chips. The interconnection method may be wire bonding or solder reflow, whatever the designs of the chips-to-be-connected require.
The chips of the stack can be found in many semiconductor device families; preferred embodiments of the invention include chip pairs of dynamic random-access memories (DRAMs) and static random-access memories (SRAMs), FLASH memories and SRAMs, digital signal processors (DSPs) and SRAMs, and application-specific integrated circuits (ASICs) and SRAMs. In these examples, each chip of the stacks is readily available. If one would endeavor to duplicate the performance of the stacked chips by a single chip, it would not only require precious design and development time, but would result in large-area chips of initially lower fabrication yield, and large-area packages consuming valuable board space. Consequently, the invention helps to alleviate the space constraint of continually shrinking applications such as cellular communications, pagers, hard disk drives, laptop computers and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multichip assembly semiconductor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multichip assembly semiconductor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multichip assembly semiconductor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2612377

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.