Methods of thermal processing and rapid thermal processing

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S612000, C438S618000

Reexamination Certificate

active

06287927

ABSTRACT:

TECHNICAL FIELD
The invention pertains to semiconductor fabrication methods employing thermal processing and rapid thermal processing.
BACKGROUND OF THE INVENTION
Thermal processing is widely utilized in semiconductor fabrication. An example use of thermal processing is dopant activation. A dopant provided in, for example, polysilicon or a monocrystalline silicon substrate, is exposed to temperatures of from about 900° C. to about 1,000° C. to improve conductivity-enhancing properties of the dopant. Another example use of thermal processing is an anneal, wherein, for example, amorphous silicon is treated at a processing temperature in excess of 1,000° C. to convert the amorphous silicon to polycrystalline silicon. Thermal annealing can also be utilized in treating, for example, metal/silicon interfaces to form metal silicide. Another example use of thermal processing is to melt and reflow materials. For instance, borophosphosilicate glass (BPSG) can be thermally treated at temperatures of from about 800° C. to about 1,100° C. to melt and reflow the BPSG. Such melting and reflow can create a substantially planarized outer surface of the BPSG, which can be desirable for further processing applications.
A particular method of thermal processing is rapid thermal processing (RTP), wherein a material is processed from one temperature to another temperature at a ramp rate of greater than about 20° C./second, and typically greater than about 25° C./second. RTP can be preferred over other forms of thermal processing. For example, thermal processing occurring at temperatures of greater than 900° C. can cause unwanted dopant diffusion. RTP can alleviate such unwanted dopant diffusion by reducing the time during which a semiconductive wafer is exposed to high temperature processing conditions.
RTP is typically conducted by exposing a wafer to a beam of radiant energy. Standard sources of the radiant energy are xenon lamps and mercury lamps. Typically, the radiant energy is in the form of light having a wavelength of from about 0.8 microns to about 2.5 microns. After the exposure to the light, the wafer is allowed to cool by diffusion of heat from the wafer to its surroundings. Wafers typically cool at a rate of at least about 20° C./second by such diffusion.
A difficulty of thermal processing methods generally, and rapid thermal processing methods particularly, is in maintaining temperature uniformity across a wafer surface during the thermal treatment. For instance, during an RTP process a wafer surface is heated by energy transfer from a radiant energy source. Frequently, some portions of the wafer surface will heat more readily than other portions, resulting in non-uniform thermal conditions across the wafer surface. It would be desirable to develop alternative methods of thermal processing wherein such non-uniform thermal conditions could be substantially alleviated.
SUMMARY OF THE INVENTION
In on e aspect, the invention encompasses a method of thermal processing. A semiconductor substrate supporting a material that is to be thermally processed is provided. A sacrificial mass is formed over the material. The mass comprises an inner portion and an outer portion, with the inner portion having a different composition than the outer portion and being nearer the material than the outer portion. The mass is exposed to radiation to heat the mass. The exposing is for a period of time sufficient for the material to absorb heat from the mass and be thermally processed thereby. The mass is then removed from over the material.
In another aspect, a semiconductor substrate supporting a material that is to be thermally processed is provided. A first sacrificial layer is formed over the material. A second sacrificial layer is formed over the first sacrificial layer. The second sacrificial layer comprises a different composition than the first sacrificial layer. The second sacrificial layer is exposed to radiation to heat the second layer. The exposing is for a period of time sufficient for the material to absorb heat from the sacrificial layer and be thermally processed thereby. The material and the sacrificial layers are cooled. The sacrificial layers are then removed from over the material.


REFERENCES:
patent: 5036023 (1991-07-01), Dautremont-Smith et al.
patent: 5336641 (1994-08-01), Fair et al.
patent: 5439850 (1995-08-01), Oztürk et al.
patent: 5523262 (1996-06-01), Fair et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of thermal processing and rapid thermal processing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of thermal processing and rapid thermal processing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of thermal processing and rapid thermal processing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2452897

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.