Methods of placing transistors in a circuit layout and...

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C716S030000, C716S030000, C716S030000, C716S030000

Reexamination Certificate

active

06209123

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention relates generally to the design and manufacture of integrated circuitry and more particularly to an apparatus and method for producing optimized cell structures.
BACKGROUND OF THE INVENTION
A common method of designing an integrated circuit (IC) in a semiconductor design requires that an integrated circuit designer first provide a library of computer stored circuit cells and a behavioral circuit model describing the functionality of the integrated circuit. The circuit cells typically include fundamental logic gates such as OR, NAND, NOR, AND, XOR, inverter, and like logical cells with an array of logic gate sizes. These cells also include sequential circuit elements such as latches and flip-flops for memory requirements. Generally, the library of computer stored circuit cells are generated by a layout designer manually. Because this process is time consuming and error prone, prior art methods and apparatus have been developed to automate this procedure.
FIG. 1
illustrates a methodology and apparatus implemented in these prior art systems. Typical prior art implementations include the Virtuoso Layout Synthesizer (LAS) tool from Cadence, the Auto Layout tool from Mentor Graphics, the Custom Cell Synthesizer (CCS) tool from MCC, and a Cadabra tool. The methodology implemented by prior art implementations will now be discussed in greater detail and with reference to FIG.
1
.
A prior art implementation
10
includes step
12
whereby an external user provides a netlist and template. The netlist comprises a set of circuit primitives such as transistors and diodes, their sizes, and interconnections. The template describes the physical form of a standard circuit cell. The template may contain cell height, supply rail size, etc.
Next, in step
14
, components of the netlist are placed in an appropriate location. Each of the components is then connected to one another in channel routing step
16
. A resulting layout is subsequently compacted in step
18
. Lastly, a layout designer is required to determine whether a resulting layout meets the template specified in initial step
12
. Thus, in step
19
, a layout designer must determine whether or not a cell height is met, whether there is proper density among the elements of the layout, and whether well height (abutment) constraints are met. Furthermore, if the layout designer determines that these constraints are not met, the layout designer must determine which parameters of the template specified in step
12
must be modified in order to generate a compliant layout. This often requires that the layout must be hand edited to meet these constraints. Each of the steps of the prior art implementation will now be discussed in greater detail.
In the first step
12
, in which an external user provides a netlist and template, prior art implementation required that a physical netlist, and not a logical netlist, be provided. A physical netlist is one in which there is a one-to-one correspondence between devices specified in the netlist and the transistors implemented in a final layout. A physical netlist is different than a logical netlist which only specifies a function to be performed and is not optimized to meet the template requirements. Stated another way, a physical netlist requires user optimization before being provided to a next step in the prior art component placement step (step
14
).
Because user optimization, or hand drafted optimization, is required, prior art implementations require a significant amount of time to simply generate one physical layout. In a slight improvement over the previously described prior art techniques, some prior art implementations provide semi-automatic means for translating logical netlists into physical netlists. However, even these slight improvements require user direction to specify a maximum transistor size. This user direction requirement again adds additional time to the layout process and introduces an increased likelihood in layout errors. As well, these prior art techniques have the undesired side effect of creating unnecessary interconnects between nodes guaranteed to be at a same electrical potential because of a manner in which a physical netlist is generated by such techniques.
In step
14
of the prior art implementation, the netlist components are placed in a two dimensional array to minimize certain cost metrics, where the cost metric is a quality indicator for the placement. Generally, a two-dimensional array is comprised of one row of N-type transistors and one row of P-type transistors. Typical cost metrics include wire length and cell height and width estimates. While a two-dimensional array is generally used, the two-dimensional array does not always give optimal results for each type of netlist. For example, because of a linear flow implemented within most prior art implementations, a cell placement selected during execution of step
14
is never modified automatically regardless of its effectiveness in satisfying a template requirement. Also, the prior art does not perform vertical alignment of transistors of the same type (P or N) in order to minimize wire length. Furthermore, prior art implementations tend to emphasize the minimization of interconnection lengths between the transistors forming the cell, but not the Channel Density (defined below). It should be noted that Channel Density should be minimized to minimize cell height. By minimizing interconnection length, prior art techniques fail to minimize a height of the cell.
In addition to the disadvantages delineated above, the method by which prior art implements step
14
, component placement, also has several drawbacks. Included in these drawbacks is a method by which prior art places ties in the layout to satisfy latch-up rules. It should be noted that after transistors are placed, prior art implementations must place “merged ties” to connect a source or drain of the transistor to a power or ground source supply. Prior art implementations are only able to place ties at the certain specified locations and are not able to implement ties at optimal locations. Furthermore, it should be noted that even the requirement that the ties be placed at certain locations and provide certain connections between a transistor and a supply source utilizes only an ad hoc process which provides no optimization.
In addition to placing ties, prior art implementations also place ports during step
14
. During the port placement step, an area in a cell is reserved to allow the cell to communicate with other cells by providing via sites or another form of interface. As with the tie placement operations, prior art implementations do not optimize placements of ports to provide maximum area utilization. Such port placement step is critical because if the port placement step is performed in an inefficient manner, block area routing will be adversely affected.
Additionally, in recent years, antenna diodes are being implemented by manual layout insertion to provide a contact from a metal layer to a Diffusion layer of a device for manufacturing purposes. This contact provides a path for charge generated in long metal lines during manufacturing to be dissipated without damaging a transistor gate or other circuit implemented on a semiconductor substrate. No prior art techniques currently available provide a method for automatically placing antenna diodes using computer software tools to create a cell layout.
In next step
16
, interconnects between components are routed by the prior art implementations. Most prior art techniques implement a channel routing methodology which reflects an attempted solution to a classic layout optimization problem which has been studied extensively. Channel routing is a methodology implemented by prior art systems in which the channel is defined to be a region between a row of N-type transistors and P-type transistors. In performing routing between the two types of transistors, the channel routing implemented by prior art implementations fails to effectively utilize the regi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of placing transistors in a circuit layout and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of placing transistors in a circuit layout and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of placing transistors in a circuit layout and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2545596

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.