Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material
Reexamination Certificate
2009-04-30
2011-12-13
Wilczewski, Mary (Department: 2822)
Semiconductor device manufacturing: process
Coating with electrically or thermally conductive material
To form ohmic contact to semiconductive material
C438S685000, C257SE21462
Reexamination Certificate
active
08076242
ABSTRACT:
A method for forming an amorphous silicon thin film is disclosed. In some embodiments, a method includes loading a substrate into a reaction chamber; and conducting a plurality of deposition cycles on the substrate. Each of at least two of the cycles includes: supplying a silicon precursor to the reaction chamber during a first time period; applying radio frequency power to the reaction chamber at least partly during the first time period; stopping supplying of the silicon precursor and applying of the radio frequency power during a second time period between the first time period and an immediately subsequent deposition cycle; and supplying hydrogen plasma to the reaction chamber during a third time period between the second time period and the immediately subsequent deposition cycle. The method allows formation of an amorphous silicon film having an excellent step-coverage and a low roughness at a relatively low deposition temperature.
REFERENCES:
patent: 4058430 (1977-11-01), Suntola et al.
patent: 4282267 (1981-08-01), Küyel
patent: 4747367 (1988-05-01), Posa
patent: 4761269 (1988-08-01), Conger et al.
patent: 4851095 (1989-07-01), Scobey et al.
patent: 4935661 (1990-06-01), Heinecke et al.
patent: 5071670 (1991-12-01), Kelly
patent: 5278435 (1994-01-01), Van Hove
patent: 5281274 (1994-01-01), Yoder
patent: 5291066 (1994-03-01), Neugebauer
patent: 5294286 (1994-03-01), Nishizawa
patent: 5300186 (1994-04-01), Hitahara
patent: 5321713 (1994-06-01), Khan
patent: 5330610 (1994-07-01), Eres
patent: 5356673 (1994-10-01), Schmitt et al.
patent: 5374570 (1994-12-01), Nasu
patent: 5395791 (1995-03-01), Cheng
patent: 5443033 (1995-08-01), Nishizawa
patent: 5443647 (1995-08-01), Aucoin et al.
patent: 5458084 (1995-10-01), Thorne
patent: 5469806 (1995-11-01), Mochizuki
patent: 5483919 (1996-01-01), Yokoyama et al.
patent: 5484664 (1996-01-01), Kitahara
patent: 5496582 (1996-03-01), Mizutani et al.
patent: 5618395 (1997-04-01), Gartner
patent: 5641984 (1997-06-01), Aftergut
patent: 5693139 (1997-12-01), Nishizawa et al.
patent: 5707880 (1998-01-01), Aftergut
patent: 5711811 (1998-01-01), Suntola et al.
patent: 5730802 (1998-03-01), Ishizumi
patent: 5769950 (1998-06-01), Takasu et al.
patent: 5855680 (1999-01-01), Soininen et al.
patent: 5916365 (1999-06-01), Sherman
patent: 6015590 (2000-01-01), Suntola et al.
patent: 6200893 (2001-03-01), Sneh
patent: 6203613 (2001-03-01), Gates et al.
patent: 6232196 (2001-05-01), Raaijmakers et al.
patent: 6270572 (2001-08-01), Kim et al.
patent: 6342277 (2002-01-01), Sherman
patent: 6539891 (2003-04-01), Lee et al.
patent: 7029995 (2006-04-01), Todd et al.
patent: 7112513 (2006-09-01), Smythe, III et al.
patent: 7186630 (2007-03-01), Todd
patent: 7563715 (2009-07-01), Haukka et al.
patent: 2003/0082296 (2003-05-01), Elers et al.
patent: 2004/0224504 (2004-11-01), Gadgil
patent: 2005/0042865 (2005-02-01), Cabral et al.
patent: 2006/0138393 (2006-06-01), Seo et al.
patent: 2006/0199357 (2006-09-01), Wan et al.
patent: 2007/0049023 (2007-03-01), Ahn et al.
patent: 2007/0148350 (2007-06-01), Rahtu et al.
patent: 0 442 490 (1991-08-01), None
patent: 0 526 779 (1993-02-01), None
patent: WO 00/63957 (2000-10-01), None
Aarik et al., “Effect of Growth Conditions on Formation of TiO2-II Thin Films in Atomic Layer Deposition Process” Appl. Surf. Sci. 112,259 (1997).
Abeles, B. et al., “Amorphous Semiconductor Superlattices,”Physical Review Letters, vol. 51, No. 21, pp. 2003-2006 (1983).
Ahonen et al., “A Study of ZnTe Films Grown on Glass Substrates Using an Atomic Layer Evaporation Method” Thin Solid Films 65, 301 (1980).
Ait-Lhouss et al., “Atomic Layer Epitaxy of GaAs from Tertiarybutylarsine and Triethylgallium” J. Appl. Phys. 78, 5834 (1995).
Akazawa, “Characterization of Self-limiting SiH2Cl2Chemisorption and Photon-stimulated Desorption as Elementary Steps for Atomic-layer Epitaxy” Phys. Rev. B 54, 10917 (1996).
Ares et al., “Growth mechanisms in Atomic layer Epitaxy of GaAs” J. Appl. Phys. 83, 3390 (1998).
Asif Khan et al., “Atomic Layer Epitaxy of GaN over Sapphire using Switched Metalorganic Chemical Vapor Deposition” Appl. Phys. Lett. 60, 1366 (1992).
Asif Khan et al., “GaN/AlN Digital Alloy Short-period Superlattices by Switched Atomic Layer Metalorganic Chemical Vapor Deposition” Appl. Phys. Lett. 63, 3470 (1993).
Asikainen et al., “AFM and STM Studies on In203and ITO Thin Films Deposited by Atomic Layer Epitaxy” Appl. Sur. Sci. 99, 91 (1996).
Asikainen et al., “Growth of Indium-Tin-Oxide Thin Films by Atomic Layer Epitaxy” J. Electrochem. Soc., 142,3538 (1995).
Asikainen et al., “Growth of In203Thin Films by Atomic Layer Epitaxy” J. Electrochem. Soc., 141,3210 (1994).
Bedair et al., “Atomic Layer Epitaxy of III-V Binary Compounds” Appl. Phys. Lett. 47, 51 (1985).
Buchan et al., “Epitaxial Growth of GaAs with (C2H5)2GaCl and AsH3in a Hot Wall system” J. Cryst. Growth 107, 331 (1991).
Chen et al., “Metalorganic Chemical Vapor Deposition of Indium Phosphide by Pulsing Precursors” Appl. Phys. Lett. 55, 987 (1989).
Dapkus et al., “Atomic Layer Epitaxy for the Growth of Heterostructures” Proc. Intern. Electron Devices Mtg. IEEE 472 (1988).
De Keijser, M. et al., “Atomic layer epitaxy of gallium arsenide with the use of atomic hydrogen,”Appl. Phys. Lett., vol. 58, No. 11, pp. 1187-1189 (1991).
Doi et al., “Stepwise Molecular Growth of GaAs by Switched Laser Metalorganic vapor Phase Epitaxy” Appl. Phys. Lett. 49, 785 (1986).
Dosho et al., “Atomic Layer Epitaxy of ZnSe-ZnTe Strained Layer Superlattices” J. Crys. Growth 95, 580 (1989).
Ducso et al., “Deposition of Tin Oxide into Porous Silicon by Atomic Layer Epitaxy” J. Electrochem. Soc., 143, 683 (1996).
Elers et al., “NbCl5as a Precursor in Atomic Layer Epitaxy” Appl. Surf. Sci., 82/83, 468 (1994).
Eres et al., “The Role of Hydride Coverage in Surface-limited Thin-film Growth of Epitaxial Silicon and Germanium” J. Appl. Phys. 74,7241 (1993).
Fan et al., “Low Temperature Growth of Thin Films of Al2O3by Sequential Surface Chemical reaction of Trimethylaluminum and H2O2” Jpn. J. Appl. Phys., 30, L1139 (1991).
Fan, J. F. et al., “Low-Temperature Growth of Thin Films, of Al2O3with Trimethylaluminum and Hydrogen Peroxide,”Mat. Res. Soc. Symp. Proc., vol. 222, pp. 327-332 (1991).
Faschinger et al., “Observation of Different Reflected High-energy Electron Diffraction Patterns during Atomic Layer Epitaxy Growth of Cd′Te Epilayers” J. Cryst. Growth 115, 692 (1991).
Fujii et al., “Atomic Layer Epitaxy of AlAs using Trimethylamine-alane and Amino-As” Appl. Phys. Lett. 62, 1420 (1993).
Fujii et al., “Desorption Properties of Amine Species during Atomic Layer Epitaxy of GaAs using Amino-As” Appl. Phys. Lett. 61, 2577 (1992).
Fujiwara et al., “Low Temperature Growth ofZnSxSe1-xAlloys Fabricated by Hydrogen Radical Enhanced Chemical Vapor Deposition in an Atomic Layer Epitaxy Mode” J. Appl. Phys. 74, 5510 (1993).
Gong et al., “Atomic Layer Epitaxy of AlGaAs” Appl. Phys. Lett. 57, 400 (1990).
Goodman et al. , “Atomic Layer Epitaxy” J. Appl. Physics 60, R65 (1986).
Gotoh et al., “Low-temperature growth of ZnSe-based Pseudomorphic Structures by Hydrogen-radical-enhanced Chemical vapor Deposition” .T. Cryst. Growth 117, 85 (1992).
Hartmann et al., “Atomic Layer Epitaxy of CdTe and MnTe” 1. Appl. Phys. 79, 3035 (1996).
Hasunuma et al., “Gas-phase-reaction-controlled Atomic-layer-epitaxy of Silicon” J. Vac. Sci. Technol., A 16, 679 (1998).
Haukka et al, “Growth mechanisms of Mixed Oxides on Alumina” Appl. Surf. Sci. 112, 23 (197).
Herman, M.A., “Atomic Layer Epitaxy—12 Years later” Vacuum 42, (1991).
Herman et al., “Atomic Layer E
Kim Jong Su
Kwon Hak Yong
Park Hyung Sang
Yoo Yong Min
Yoon Tae Ho
ASM Genitech Korea Ltd.
Green Telly
Knobbe Martens Olson & Bear LLP
Wilczewski Mary
LandOfFree
Methods of forming an amorphous silicon thin film does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods of forming an amorphous silicon thin film, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of forming an amorphous silicon thin film will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4307272