Methods for improving the cracking resistance of low-k...

Semiconductor device manufacturing: process – Radiation or energy treatment modifying properties of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S410000

Reexamination Certificate

active

07094713

ABSTRACT:
Methods for improving the mechanical properties of a CDO film are provided. The methods involve, for instance, providing either a dense CDO film or a porous CDO film in which the porogen has been removed followed by curing the CDO film at an elevated temperature using either a UV light treatment, an e-beam treatment, or a plasma treatment such that the curing improves the mechanical toughness of the CDO dielectric film.

REFERENCES:
patent: 4357451 (1982-11-01), McDaniel
patent: 4882008 (1989-11-01), Garza et al.
patent: 4885262 (1989-12-01), Ting et al.
patent: 5504042 (1996-04-01), Cho et al.
patent: 5686054 (1997-11-01), Barthel et al.
patent: 5700844 (1997-12-01), Hedrick et al.
patent: 5789027 (1998-08-01), Watkins et al.
patent: 5851715 (1998-12-01), Barthel et al.
patent: 5858457 (1999-01-01), Brinker et al.
patent: 5920790 (1999-07-01), Wetzel et al.
patent: 6140252 (2000-10-01), Cho et al.
patent: 6177329 (2001-01-01), Pang
patent: 6268276 (2001-07-01), Chan et al.
patent: 6270846 (2001-08-01), Brinker et al.
patent: 6271273 (2001-08-01), You et al.
patent: 6312793 (2001-11-01), Grill et al.
patent: 6329017 (2001-12-01), Liu et al.
patent: 6329062 (2001-12-01), Gaynor
patent: 6340628 (2002-01-01), Van Cleemput et al.
patent: 6365266 (2002-04-01), MacDougall et al.
patent: 6383466 (2002-05-01), Domansky et al.
patent: 6383955 (2002-05-01), Matsuki et al.
patent: 6386466 (2002-05-01), Ozawa et al.
patent: 6387453 (2002-05-01), Brinker et al.
patent: 6391932 (2002-05-01), Gore et al.
patent: 6392017 (2002-05-01), Chandrashekar
patent: 6420441 (2002-07-01), Allen et al.
patent: 6444715 (2002-09-01), Mukherjee et al.
patent: 6479374 (2002-11-01), Ioka et al.
patent: 6500770 (2002-12-01), Cheng et al.
patent: 6548113 (2003-04-01), Birnbaum et al.
patent: 6576345 (2003-06-01), Cleemput et al.
patent: 6596467 (2003-07-01), Gallagher et al.
patent: 6596654 (2003-07-01), Bayman et al.
patent: 6667147 (2003-12-01), Gallagher et al.
patent: 6677251 (2004-01-01), Lu et al.
patent: 6756085 (2004-06-01), Waldfried et al.
patent: 6805801 (2004-10-01), Humayun et al.
patent: 6812043 (2004-11-01), Bao et al.
patent: 6831284 (2004-12-01), Demos et al.
patent: 6848458 (2005-02-01), Shrinivasan et al.
patent: 2002/0001973 (2002-01-01), Wu et al.
patent: 2002/0034626 (2002-03-01), Liu et al.
patent: 2002/0106500 (2002-08-01), Albano et al.
patent: 2002/0123240 (2002-09-01), Gallagher et al.
patent: 2002/0192980 (2002-12-01), Hogle et al.
patent: 2003/0064607 (2003-04-01), Leu et al.
patent: 2003/0119307 (2003-06-01), Bekiaris et al.
patent: 2003/0157248 (2003-08-01), Watkins et al.
patent: 2004/0069410 (2004-04-01), Moghadam et al.
patent: 2004/0096672 (2004-05-01), Lukas et al.
patent: 2004/0099952 (2004-05-01), Goodner et al.
patent: 2004/0102031 (2004-05-01), Kloster et al.
patent: 2004/0185679 (2004-09-01), Ott et al.
patent: WO95/07543 (1995-03-01), None
U.S. Appl. No. 10/820,525, filed Apr. 7, 2004 by Wu et al., titled “Methods for Producing Low-k CDO Films with Low Residual Stress.”
Cho et al., “Plasma Treatments of Molecularly Templated Nanoporous Silica Films,” Electrochemical and Solid-State Letters, 4 (4) G35-G38 (2001).
Yung et al., “Spin-on Mesoporous Silica Films with Ultralow Dielectric Constants, Ordered Pore Strucutres, and Hydrophobic Surfaces,” Adv. Mater. 2001, 13, No. 14, 1099-1102.
Schulberg et al., “System for Deposition of Mesoporous Materials,” U.S. Appl. No. 10/295,965, filed Nov. 15, 2002, 64 Pages.
Watkins et al., “Mesoporous Materials and Methods,” U.S. Appl. No. 10/301,013, filed Nov. 21, 2002, 34 Pages.
Justin F. Gaynor, “In-Situ Treatment of Low-K Films With a Silylating Agent After Exposure To Oxidizing Environments,” U.S. Appl. No. 10/056,926 filed Jan. 24, 2002, 34 Pages.
Humayun et al., “Method for Forming Porous Films By Porogen Removal Combined Wtih In SITU Surface Modification”, Novellus Corporation, Appl. No. 10/404,693, filed Mar. 31, 2003, pp. 1-32.
Tipton et al., “Method Of Porogen Removal From Porous Low-K Films Using UV Radiation”, Novellus Systems, Inc., U.S. Appl. No. 10/672,311, filed Sep. 26, 2003, pp. 1-27.
Jan, C.H., et al,90NM Generation, 300mm Wafer Low k ILD/Cu Interconnect Technology, 2003 IEEE Interconnect Technology Conference.
Wu et al., U.S. Appl. No. 10/789,103, entitled: Methods For Producing Low-K CDO Films With Low Residual Stress.
Wu et al., U.S. Appl. No. 10/800,409, entitled: Methods For Producing Low-K CDO Films.
Gopinath et al., U.S. Appl. No. 10/016,017, File Date: Dec. 12, 2001, entitled: Method and Apparatus for Introduction of Solid Precursors and Reactants into a Supercritical Fluid Reactor.
Reinhardt et al., U.S. Appl. No. 10/125,614, File Date: Apr. 18, 2002, entitled: Supercritical Solutions for Cleaning Wafers.
Joyce et al., U.S. Appl. No. 10/202,987, File Date: Jul. 23, 2002, entitled: Supercritical Solutions for Cleaning Photoresist and Post-Etch Residue from Low-K Materials.
Tipton et al., “Methods for Removal of Porogens From Porous Low-K Films Using Supercritical Fluids”, Novellus Systems, Inc., Appl. No. 10/672,305, filed Sep. 26, 2003, pp. 1-32.
Gangpadhyay et al., “The First International Surface Cleaning Workshop,” Northeastern University, Nov. 11-14, 2002.
Cho et al., “Method and Apparatus for UV Exposure of Low Dielectric Constant Materials for Porogen Removal and Improved Mechanical Properties”, Novellus Systems, Inc., Appl. No. 10/800,377, filed Mar. 11, 2004, pp. 1-31.
Wu et al., “Method and Apparatus of UV Exposure of Low Dielectric Constant Materials for Porogen Removal and Improved Mechanical Properties”, Novellus Systems, Inc., Appl. No. 10/807,680, filed Mar. 23, 2004, pp. 1-34.
Humayun et al., “Method For Forming Porous Films By Porogen Removal Combined With In Situ Modification”, U.S. Appl. No. 10/404,693, filed Mar. 31, 2003, Office Action dated Mar. 15, 2005.
Tipton et al., “Method Of Porogen Removal From Porous Low-K Films Using UV Radiation”, U.S. Appl. No. 10/672,311, filed Sep. 26, 2003, Office Action dated Sep. 7, 2004.
Tipton et al., “Method Of Porogen Removal From Porous Low-K Films Using UV Radiation”, U.S. Appl. No. 10/672,311, filed Sep. 26, 2003, Office Action dated Dec. 28, 2004.
Tipton et al., “Method For Removal Of Porogens From Porous Low-K Films Using Supercritical Fluids”, U.S. Appl. No. 10/672,305, Office Action dated Mar. 22, 2005.
Bandyopadhyay et al., “Method to Improve Machenical Strength of Low-K Dielectric Film Using Modulated UV Exposure”, U.S. Appl. No. 10/825,888, filed Apr. 16, 2004.
R.D. Miller et al., “Phase-Separated Inorganic-Organic Hybrids for Microelectronic Applications,” MRS Bulletin, Oct. 1997, pp. 44-48.
Jin et al., “Nanoporous Silica as an Ultralow-k Dielectric,” MRS Bulletin, Oct. 1997, pp. 39-42.
Asoh et al., “Fabrication of Ideally Ordered Anodic Porous Alumina with 63 nm Hole Periodocity Using Sulfuric Acid,” J. Vac. Sci. Technol. B 19(2), Mar./Apr. 2001, pp. 569-572.
Asoh et al., “Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured AI,” Journal of the Electrochemica Society, 148 (4) B152-B156 (2001) pp. B152-B156.
Holland et al., “Nonlithographic Technique for the Production of Large Area High Density Gridded Field Sources,” J. Vac. Sci. Technol. B 17(2), Mar./Apr. 1999, pp. 580-582.
Masuda et al. “Highly Ordered Nanochannel-Array Architecture in Anodic Alumina,” App. Phys. Lett. 71(19), Nov. 1997, pp. 2770-2772.
Clube et al., White Paper from Holotronic Technologies SA; downloaded from www.holtronic.com/whitepaper/fine-patt.pdf on Mar. 12, 2002.
Meli et al., “Self-Assembled Masks for the Transfer of Nanometer-Scale Patterns into Surfaces: Characterization by AFM and LFM”, Nano Letters, vol. 2, No. 2, 2002, 131-135.
“Shipley Claims Porous Low K Dielectric Breakthrough,”

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for improving the cracking resistance of low-k... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for improving the cracking resistance of low-k..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for improving the cracking resistance of low-k... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3712256

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.