Static information storage and retrieval – Read/write circuit – Testing
Reexamination Certificate
2001-01-26
2002-05-28
Le, Vu A. (Department: 2824)
Static information storage and retrieval
Read/write circuit
Testing
C365S185220, C365S185270
Reexamination Certificate
active
06396752
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The invention lies in the field of memory technology and memory devices. More specifically, the present invention relates to a method for testing a memory cell having a selection transistor that is situated between a bit line and ground and that comprises a floating gate. The gate is connected to a data line via a blocking transistor that is connected to a word line at its gate.
Memory cells in which information is stored in the floating gate of the selection transistor are viewed today as a promising approach to realizing memory elements in the nanometer (nm) range. What are known as PLED (Planar Localized Electron Device) vertical transistors, which guarantee a good insulation of the floating gates of the selection transistors as a result of their excellent blocking characteristics, are preferably used for storage cells of this kind. In other words, PLED vertical transistors make possible the realization of non-volatile storage elements. Of course, this characteristic of the storage elements is also guaranteed by the good insulation of the floating gates by the gate oxide in the individual memory cells.
Although PLED vertical transistors or other transistors with sufficient blocking characteristics guarantee good insulation of the floating gates of the selection transistors, leakage currents can occur via the floating gates, which lead to a charge balance on the floating gate and thus at the storage point of the memory cell, i.e. to an information loss. In and of themselves, these leakage currents are generally very small and can usually be ignored. However, in a semiconductor memory that is constructed from memory cells of the above type, a test is nevertheless necessary in order to find weak memory cells whose leakage currents do not allow a sufficient data retaining characteristic. No method has been suggested hitherto which would make it possible to detect such memory cells whose data retaining characteristics were insufficient—i.e. “weak” memory cells—in a memory having locations of the type described above.
The above-noted problem will now be described in detail with reference to FIG.
3
.
By activating a word line WL, a tunneling effect (cf. arrow TE) is controlled in a blocking transistor that is connected to the word line WL via gate G. The blocking transistor may be a PLED vertical transistor, for example. When the word line WL is active, a tunnel current can flow via a data line DL to a floating gate G
2
, which is otherwise insulated, of a selection transistor T
2
that is connected to the word line WL by gate G
1
and that is situated with its source-drain path S/D between a bit line BL and ground Gnd. Once the word line WL is disconnected, the charge on the floating gate G
2
is trapped and should in theory remain there for an arbitrary length of time. By activating the bit line BL and by means of a corresponding reading system that is connected to the bit line BL, it is detected whether or not the selection transistor T
2
is in the on state, in which current flows to ground. In other words, it is determined which information is stored at the gate G
2
.
In a test of a memory that is constructed of memory cells of that type, it is necessary to test whether, even over the long term, there is no draining of the charge to the data line DL via the blocking transistor, and thus no loss of information, when the word line WL is disconnected, i.e. gates G
1
and G
2
are disconnected. For reasons of cost alone, it must be possible to execute such a test for all locations of a memory in a short time, for instance in a few seconds, in order to be able to ensure the long-term reliability of these memory cells.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a method of testing a memory cell comprising a floating gate which overcomes the above-noted deficiencies and disadvantages of the prior art devices and methods of this general kind, and which enables checking a large number of cells for reliability in a short time without substantial outlay.
With the above and other objects in view there is provided, in accordance with the invention, a memory cell testing method, which comprises:
providing a memory cell with a selection transistor having a floating gate disposed between a bit line and ground, and a blocking transistor connected between the floating gate of the selection transistor and a data line and having a gate connected to a word line;
in a test mode, applying voltage surges to one of the source, the drain, and a substrate of the selection transistor for generating disturbing couplings to the floating gate.
In accordance with an added feature of the invention, a plurality of memory cells are tested in parallel.
In accordance with an additional feature of the invention, the voltage surges are applied between the source and the drain of the selection transistor. In a preferred variant of the invention, the voltage surges are applied when the source-drain path is conductive, such that the voltage surges spread to the bit line connected to the corresponding memory cell.
In accordance with another feature of the invention, the voltage surges are applied to the substrate of the selection transistor.
With the above and other objects in view there is also provided, in accordance with the invention, a testing configuration for testing a memory cell having a selection transistor with source, a drain, and a floating gate disposed between a bit line and ground, the testing configuration comprising:
two MOS transistors of mutually different channel types connected in series and forming a connecting node;
said MOS transistors having gates and having source-drain paths connected between two potentials; and
said connecting node between said MOS transistors being connected to one of the source and the drain of the selection transistor; and
an inverter connected to said gates of said MOS transistors for receiving test mode signals.
In other words, the objects of the invention are achieved in a method as described above in that voltage surges are applied to the source, the drain, or the substrate of the selection transistor in a test mode for the purpose of generating disturbing couplings to the floating gate.
In the inventive method, to be able to find weak memory cells signals are applied to the selection transistor to sharply elevate the leakage currents from said weak memory cells. This is easily achieved by applying voltage surges to the source, the drain, or the substrate of the selection transistor, thereby giving rise to an oscillation of the voltage level.
In this process, a highly parallel test for the floating gates of a plurality of memory cells of a memory with respect to leakage current mechanisms is possible without further ado in that a common source voltage or substrate voltage is applied to the selection transistors of the memory cells. Specifically, in such a test the common substrate voltage or the common source voltage or the voltage at the bit line can be varied as a function of time.
In the inventive method, the test itself can be initiated by changing over to a corresponding mode. The generation of the voltage for the drain, source, or substrate of the selection transistor can be accomplished either on the chip of the memory itself or by applying an external voltage.
The identification of defective memory cells occurs in the test by a readout and evaluation of information that has been previously written into the memory, i.e. charge at the floating gates of the respective selection transistors locations.
The novel method thus makes possible a highly parallel, and thus effective, test for leakage current mechanisms between the insulated, i.e. floating, gate and the data line. This test can be realized by simple means, so that the equipment configuration required to execute the inventive method does not require a large additional outlay, as will be described in greater detail below.
Other features which are considered as characteristic for the invention are set forth in the appended
Lüpke Jens
Pöchmüller Peter
Greenberg Laurence A.
Infineon - Technologies AG
Le Vu A.
Mayback Gregory L.
Nguyen Tuan T.
LandOfFree
Method of testing a memory cell having a floating gate does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of testing a memory cell having a floating gate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of testing a memory cell having a floating gate will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2864196