Method of porogen removal from porous low-k films using UV...

Semiconductor device manufacturing: process – Formation of electrically isolated lateral semiconductive... – Total dielectric isolation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257SE21273

Reexamination Certificate

active

10672311

ABSTRACT:
Methods of preparing a porous low-k dielectric material on a substrate are provided. The methods involve the use of ultraviolet radiation to react with and remove porogen from a porogen containing precursor film, leaving a porous low-k dielectric matrix. Methods using oxidative conditions and non-oxidative conditions are described. The methods described may be used to remove porogen from porogen-containing precursor films. The porogen may be a hydrocarbon such as a terpene (e.g., alpha-terpinene) or a norbornene (e.g., ENB). The resulting porous low-k dielectric matrix can then be annealed to remove water and remaining silanols capped to protect it from degradation by ambient conditions, which methods will also be described.

REFERENCES:
patent: 4357451 (1982-11-01), McDaniel
patent: 4882008 (1989-11-01), Garza et al.
patent: 4885262 (1989-12-01), Ting et al.
patent: 5504042 (1996-04-01), Cho et al.
patent: 5686054 (1997-11-01), Barthel et al.
patent: 5700844 (1997-12-01), Hedrick et al.
patent: 5789027 (1998-08-01), Watkins et al.
patent: 5849640 (1998-12-01), Hsia et al.
patent: 5851715 (1998-12-01), Barthel et al.
patent: 5858457 (1999-01-01), Brinker et al.
patent: 5920790 (1999-07-01), Wetzel et al.
patent: 6140252 (2000-10-01), Cho et al.
patent: 6177329 (2001-01-01), Pang
patent: 6258735 (2001-07-01), Xia et al.
patent: 6268276 (2001-07-01), Chan et al.
patent: 6270846 (2001-08-01), Brinker et al.
patent: 6271273 (2001-08-01), You et al.
patent: 6312793 (2001-11-01), Grill et al.
patent: 6329017 (2001-12-01), Liu et al.
patent: 6329062 (2001-12-01), Gaynor
patent: 6340628 (2002-01-01), Van Cleemput et al.
patent: 6365266 (2002-04-01), MacDougall et al.
patent: 6383466 (2002-05-01), Domansky et al.
patent: 6383955 (2002-05-01), Matsuki et al.
patent: 6386466 (2002-05-01), Ozawa et al.
patent: 6387453 (2002-05-01), Brinker et al.
patent: 6391932 (2002-05-01), Gore et al.
patent: 6392017 (2002-05-01), Chandrashekar
patent: 6420441 (2002-07-01), Allen et al.
patent: 6444715 (2002-09-01), Mukherjee et al.
patent: 6479374 (2002-11-01), Ioka et al.
patent: 6500770 (2002-12-01), Cheng et al.
patent: 6548113 (2003-04-01), Birnbaum et al.
patent: 6573030 (2003-06-01), Fairbairn et al.
patent: 6576345 (2003-06-01), Cleemput et al.
patent: 6596467 (2003-07-01), Gallagher et al.
patent: 6596654 (2003-07-01), Bayman et al.
patent: 6610362 (2003-08-01), Towle
patent: 6632478 (2003-10-01), Gaillard et al.
patent: 6667147 (2003-12-01), Gallagher et al.
patent: 6677251 (2004-01-01), Lu et al.
patent: 6715498 (2004-04-01), Humayun et al.
patent: 6756085 (2004-06-01), Waldfried et al.
patent: 6797643 (2004-09-01), Rocha-Alvarez et al.
patent: 6805801 (2004-10-01), Humayun et al.
patent: 6812043 (2004-11-01), Bao et al.
patent: 6815373 (2004-11-01), Singh et al.
patent: 6831284 (2004-12-01), Demos et al.
patent: 6846380 (2005-01-01), Dickinson et al.
patent: 6848458 (2005-02-01), Shrinivasan et al.
patent: 6914014 (2005-07-01), Li et al.
patent: 2002/0001973 (2002-01-01), Wu et al.
patent: 2002/0034626 (2002-03-01), Liu et al.
patent: 2002/0106500 (2002-08-01), Albano et al.
patent: 2002/0123240 (2002-09-01), Gallagher et al.
patent: 2002/0192980 (2002-12-01), Hogle et al.
patent: 2003/0064607 (2003-04-01), Leu et al.
patent: 2003/0119307 (2003-06-01), Bekiaris et al.
patent: 2003/0157248 (2003-08-01), Watkins et al.
patent: 2003/0198895 (2003-10-01), Toma et al.
patent: 2004/0069410 (2004-04-01), Moghadam et al.
patent: 2004/0096586 (2004-05-01), Schulberg et al.
patent: 2004/0096593 (2004-05-01), Lukas et al.
patent: 2004/0096672 (2004-05-01), Lukas et al.
patent: 2004/0099952 (2004-05-01), Goodner et al.
patent: 2004/0101633 (2004-05-01), Zheng et al.
patent: 2004/0102031 (2004-05-01), Kloster et al.
patent: 2004/0161532 (2004-08-01), Kloster et al.
patent: 2004/0170760 (2004-09-01), Meagley et al.
patent: 2004/0185679 (2004-09-01), Ott et al.
patent: 2005/0064698 (2005-03-01), Chang et al.
patent: WO95/07543 (1995-03-01), None
Cho et al., “Plasma Treatments of Molecularly Templated Nanoporous Silica Films,” Electrochemical and Solid-State Letters, 4 (4) G35-G38 (2001).
Yung et al., “Spin-on Mesoporous Silica Films with Ultralow Dielectric Constants, Ordered Pore Structures, and Hydrophobic Surfaces,” Adv. Mater. 2001, 13, No. 14, 1099-1102.
Schulberg et al., “System for Deposition of Mesoporous Materials,” U.S. Appl. No. 10/295,965, filed Nov. 15, 2002, 64 Pages.
Watkins et al., “Mesoporous Materials and Methods,” U.S. Appl. No. 10/301,013, filed Nov. 21, 2002, 34 Pages.
Justin F. Gaynor, “In-Situ Treatment of Low-K Films With a Silylating Agent After Exposure To Oxidizing Environments,” U.S. Appl. No. 10/056,926, filed Jan. 24, 2002, 34 Pages.
Gangpadhyay et al., “The First International Surface Cleaning Workshop,” Northeastern University, Nov. 11-14, 2002.
Jan, C.H., et al,90NM Generation, 300mm Wafer Low k ILD/Cu Interconnect Technology, 2003 IEEE Interconnect Technology Conference.
Wu et al., U.S. Appl. No. 10/789,103, entitled: Methods For Producing Low-K Cdo Films With Low Residual Stress.
Wu et al., U.S. Appl. No. 10/820,525, entitled: Methods For Producing Low-K Cdo Films With Low Residual Stress.
Wu et al., U.S. Appl. No. 10/800,409, entitled: Methods For Producing Low-K CDO Films.
U.S. Appl. No. 10/016,017, filed Dec. 12, 2001.
U.S. Appl. No. 10/125,614, filed Apr. 18, 2002.
U.S. Appl. No. 10/202,987, filed Jul. 23, 2002.
Humayun et al., “Method For Forming Porous Films By Porogen Removal Combined With In Situ Modification”, U.S. Appl. No. 10/404,693, filed Mar. 31, 2003, Office Action dated Mar. 15, 2005.
Tipton et al., “Method For Removal Of Porogens From Porous Low-K Films Using Supercritical Fluids”, U.S. Appl. No. 10/372,305, Office Action dated Mar. 22, 2005.
Humayun et al., “Method for Forming Porous Films By Porogen Removel Combined Wtih In SITU Surface Modification”, Novellus Corporation, U.S. Appl. No. 10/404,693, filed Mar. 31, 2003, pp. 1-32.
Tipton et al., “Method for Removal of Porogens From Porous Low-K Films Using Supercritical Fluids”, Novellus Systems, Inc., U.S. Appl. No. 10/672,305, filed Sep. 26, 2003, pp. 1-32.
Cho et al., “Method and Apparatus for UV Exposure of Low Dielectric Constant Materials for Porogen Removal and Improved Mechanical Properties”, Novellus Systems, Inc., Appl. No. 10/800,377, filed Mar. 11, 2004, pp. 1-31.
Wu et al., “Method and Apparatus of UV Exposure of Low Dielectric Constant Materials for Porogen Removal and Improved Mechanical Properties”, Novellus Systems, Inc., U.S. Appl. No. 10/807,680, filed Mar. 23, 2004, pp. 1-34.
Bandyopadhyay et al., “Method to Improve Mechanical Strength of Low-K Dielectric Film Using Modulated UV Exposure”, U.S. Appl. No. 10/825,888, filed Apr. 16, 2004.
R.D. Miller et al., “Phase-Separated Inorganic-Organic Hybrids for Microelectronic Applications,” MRS Bulletin, Oct. 1997, pp. 44-48.
Jin et al., “Nanoporous Silica as an Ultralow-kDielectric,” MRS Bulletin, Oct. 1997, pp. 39-42.
Asoh et al., “Fabrication of Ideally Ordered Anodic Porous Alumina with 63 nm Hole Periodocity Using Sulfuric Acid,” J. Vac. Sci. Technol. B 19(2), Mar./Apr. 2001, pp. 569-572.
Asoh et al., “Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured AI,” Journal of the Electrochemica Society, 148 (4) B152-B156 (2001) pp. B152-B156.
Holland et al., “Nonlithographic Technique for the Production of Large Area High Density Gridded Field Sources,” J. Vac. Sci. Technol. B 17(2), Mar./Apr. 1999, pp. 580-582.
Masuda et al. “Highly Ordered Nanochannel-Array Architecture in Anodic Alumina,” App. Phys. Lett. 71(19), Nov. 1997, pp. 2770-2772.
Clube et al., White Paper from Holotronic Technologies SA; downloaded from www.hdotronic.com/whitepaper/fine-patt.pdf on Mar. 12, 2002.
Meli et al., “Self-Assembled Masks for the Transfer of Nanometer-Sca

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of porogen removal from porous low-k films using UV... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of porogen removal from porous low-k films using UV..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of porogen removal from porous low-k films using UV... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3748749

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.