Method of manufacturing semiconductor devices

Semiconductor device manufacturing: process – Coating of substrate containing semiconductor region or of... – Multiple layers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S656000, C438S785000, C438S240000, C438S104000, C438S396000

Reexamination Certificate

active

06326316

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device using a metal oxide thin film as a capacitor dielectric film and a method of manufacturing the same.
It is possible to allow an electronic device to perform a required function by improving the circuit construction. In addition, with recent progress in miniaturization of electronic devices, it is advantageous to use a functional thin film capable of utilizing the characteristics of the film material itself for achieving the required function.
Particularly, the cell area is now greatly diminished in integrated circuits including those using many transistors in combination for storing information such as SRAM (Static Random Access read write Memory) and EEPROM (Electrically Erasable and Programmable Read Only Memory), and those using transistors and capacitors in combination for storing information such as DRAM (Dynamic Random Access Memory) and FRAM (Ferroelectric Random Access read write Memory). It is now very difficult to form these integrated circuits by using the conventional MOS transistors and MOS capacitors.
Particularly, in order to prevent the S/N ratio from being lowered, a capacitor is required to maintain a predetermined capacitance even if the minimum processing dimension of the integrated circuit is diminished. As a material of a dielectric film of a capacitor meeting this requirement, attentions are paid to functional materials exhibiting a dielectric constant higher than that of a silicon oxide film or a silicon nitride/silicon oxide laminate film (NO film).
Metal oxides having a perovskite crystal structure such as Ba
x
Sr
1−x
TiO
3
(BST) and PbZr
x
Ti
1−x
O
3
(PZT) exhibit a dielectric constant of several hundred at room temperature and, thus, are useful as capacitor dielectric film. In using a thin film of the metal oxide as a capacitor dielectric film, it is impossible to use a conventional material of polycrystalline silicon (poly-Si) for forming an electrode, particularly, a lower electrode. If a metal oxide thin film is formed directly on the poly-Si electrode, the surface of the poly-Si electrode is oxidized to form a SiO
2
layer having a small dielectric constant. It follows that the effective amount of charge accumulated in the capacitor is determined by the capacitance of the SiO
2
layer.
To overcome the above-noted difficulty, a noble metal such as platinum (Pt), iridium (Ir), ruthenium (Ru), rhenium (Re), or osmium (Os) is generally used for forming the lower electrode of a capacitor using a dielectric thin film of BST or PZT. Platinum is scarcely oxidized. The other noble metals such as Ir, Ru, Re and Os may be oxidized to some extent. However, the oxides of these noble metals act as conductors. Because of the low reactivity with oxygen, these noble metals are used for forming the electrode of a capacitor including a metal oxide dielectric thin film.
As pointed out above, ruthenium, even if oxidized, forms a conductive oxide. In addition, ruthenium tetraoxide (RuO
4
) has a high vapor pressure, making it possible to subject a Ru electrode to dry etching widely employed nowadays in the manufacture of a semiconductor device. It is also possible to connect a Ru electrode directly to a contact plug generally made of poly-Si without interposing a barrier metal. Such being the situation, Ru is considered to be the most prospective electrode material.
However, because of the low reactivity, Ru fails to adhere strongly to the poly-Si contact plug or to a base layer such as an interlayer insulating film. As a result, the Ru film tends to peel in the subsequent heating step or sintering step. In addition, Ru has a high melting point unlike other noble metals such as Pt. It follows that a Ru film, if formed under low temperatures, has a low crystallinity. If a heat treatment is applied to a Ru film having a low crystallinity, a change in stress accompanying a change in the crystallinity of Ru causes the Ru film to peel more easily from the under layer or from the dielectric film formed on the Ru film.
As described above, a Ru film exhibits excellent characteristics if used as a lower electrode of a capacitor including a metal oxide dielectric thin film. However, since Ru is low in reactivity, the Ru film fails to adhere strongly to a base layer and tends to peel. It follows that reliability of the capacitor including a metal oxide dielectric thin film is lowered.
BRIEF SUMMARY OF THE INVENTION
An object of the present invention is to provide a semiconductor device comprising a capacitor including a metal oxide dielectric thin film, which permits forming a high quality ruthenium film having a low stress and capable of good adhesion to a base layer so as to contribute to improvement in the reliability of the capacitor.
Another object is to provide a method of manufacturing the above-noted semiconductor device.
According to a first aspect of the present invention, there is provided a semiconductor device, comprising a substrate, and a capacitor formed on the substrate and including a lower electrode formed of a ruthenium/tantalum laminate film consisting essentially of a tantalum film and a ruthenium film formed on the tantalum film, a metal oxide thin film formed on the ruthenium film of the lower electrode, and an upper electrode formed on the metal oxide thin film, the ruthenium film exhibiting (00n) dominant orientation, where n denotes a positive integer.
According to a second aspect of the present invention, there is provided a semiconductor device, comprising a semiconductor substrate, a cell transistor formed in the semiconductor substrate, an interlayer insulating film in which is formed a contact hole communicating with a part of the cell transistor, a contact plug buried in the contact hole formed in the interlayer insulating film, a capacitor lower electrode formed of a ruthenium/tantalum laminate film consisting essentially of a tantalum film and a ruthenium film formed on the tantalum film, the lower electrode being formed on the interlayer insulating film and connected to the contact plug, a capacitor dielectric film consisting essentially of a metal oxide and formed on the ruthenium film included in the lower electrode, and a capacitor upper electrode formed on the capacitor dielectric film, the ruthenium film exhibiting (00n) dominant orientation, where n denotes a positive integer.
According to a third aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising the steps of forming a tantalum film on a substrate, forming a ruthenium film on the tantalum film at 100° C. or less, the ruthenium film exhibiting (00n) dominant orientation, where n denotes a positive integer, forming a metal oxide thin film on the ruthenium film, and forming an electrically conductive-film on the metal oxide film.
Further, according to a fourth aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising the steps of forming an interlayer insulating film on a semiconductor substrate having a cell transistor formed therein in advance, forming a contact hole in the interlayer insulating film such that the contact hole communicates with a part of the cell transistor, burying a contact plug in the contact hole, forming a tantalum film connected to the contact plug on the interlayer insulating film, forming a ruthenium film at 100° C. or less on the tantalum film, the ruthenium film exhibiting (00n) dominant orientation, where n denotes a positive integer, patterning a laminate film consisting of the tantalum film and the ruthenium film to form a lower electrode of a capacitor, forming a metal oxide dielectric thin film on the patterned ruthenium film, and forming an upper electrode on the dielectric thin film.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of manufacturing semiconductor devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of manufacturing semiconductor devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing semiconductor devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2566005

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.