Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate
Reexamination Certificate
2003-01-17
2004-12-07
Niebling, John F. (Department: 2812)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having insulated gate
C438S589000
Reexamination Certificate
active
06828195
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to field effect transistors, in particular trench DMOS transistors, and methods of their manufacture.
Power field effect transistors, e.g., MOSFETs (metal oxide semiconductor field effect transistors), are well known in the semiconductor industry. One type of MOSFET is a DMOS (double diffused metal oxide semiconductor) transistor. DMOS transistors typically include a substrate on which an epitaxial layer is grown, a doped source junction, a doped heavy body, a doped well of the same (p or n) doping as the heavy body, and a gate electrode. In trenched DMOS transistors the gate electrode is a vertical trench. The heavy body is typically diffused deeper than the bottom of the trench, to minimize electric field at the bottom corners of the trench and thereby prevent avalanche breakdown from damaging the device. The trench is filled with conductive polysilicon, and the polysilicon is generally overetched, to assure that it is completely removed from the surface surrounding the trench. This overetching generally leaves a recess between the top of the polysilicon and the surface of the semiconductor substrate (i.e., the surface of the epitaxial layer). The depth of this recess must be carefully controlled so that it is shallower than the depth of the source junctions. If the recess is deeper than the source junctions the source may miss the gate, resulting in high on-state resistance, high threshold, and potentially a non-functional transistor.
The source and drain junctions can be doped with either p-type or n-type dopants; in either case, the body will be doped with the opposite dopant, e.g., for n-type source and drain the body will be p-type. DMOS transistors in which the source and drain are doped with p-type carriers are referred to as “p-channel”. In p-channel DMOS transistors a negative voltage applied to the transistor gate causes current flow from the source region, through a channel region of the body, an accumulation region of the epitaxial layer, and the substrate, to the drain region. Conversely, DMOS transistors, in which the source and drain are doped with n-type carriers, are referred to as “n-channel”. In n-channel DMOS transistors a positive voltage applied to the transistor gate causes current to flow from drain to source.
It is desirable that DMOS transistors have low source to drain resistance (Rds
on
) when turned on and low parasitic capacitance. The transistor structure should also avoid “punchthrough”. Punchthrough occurs when, upon application of a high drain to source voltage, depletion into the body region extends to the source region, forming an undesirable conductive path through the body region when the transistor should be off. Finally, the transistor should have good “ruggedness”, i.e., a high activation current is needed to turn on the parasitic transistor that inherently exists in DMOS transistors.
Generally a large number of MOSFET cells are connected in parallel forming a single transistor. The cells may be arranged in a “closed cell” configuration, in which the trenches are laid out in a grid pattern and the cells are enclosed on all sides by trench walls. Alternatively, the cells may be arranged in an “open cell” configuration, in which the trenches are laid out in a “stripe” pattern and the cells are only enclosed on two sides by trench walls. Electric field termination techniques are used to terminate junctions (doped regions) at the periphery (edges) of the silicon die on which the transistors are formed. This tends to cause the breakdown voltage to be higher than it would otherwise be if controlled only by the features of the active transistor cells in the central portions of the die.
SUMMARY OF THE INVENTION
The present invention provides field effect transistors that have an open cell layout that provides good uniformity and high cell density and that is readily scalable. Preferred trenched DMOS transistors exhibit low Rds
on
, low parasitic capacitance, excellent reliability, resistance to avalanche breakdown degradation, and ruggedness. Preferred devices also include a field termination that enhances resistance to avalanche breakdown. The invention also features a method of making trench DMOS transistors.
In one aspect, the invention features a trenched field effect transistor that includes
(a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
Preferred embodiments include one or more of the following features. The doped well has a substantially flat bottom. The depth of the heavy body region relative to the depths of the well and the trench is selected so that the peak electric field, when voltage is applied to the transistor, will be spaced from the trench. The doped well has a depth less than the predetermined depth of the trench. The trench has rounded top and bottom corners. There is an abrupt junction at the interface between the heavy body and the well, to cause the peak electric field, when voltage is applied to the transistor, to occur in the area of the interface.
In another aspect, the invention features an array of transistor cells. The array includes (a) a semiconductor substrate, (b) a plurality of gate-forming trenches arranged substantially parallel to each other and extending in a first direction, the space between adjacent trenches defining a contact area, each trench extending a predetermined depth into said substrate, the predetermined depth being substantially the same for all of said gate-forming trenches; (c) surrounding each trench, a pair of doped source junctions, positioned on opposite sides of the trench and extending along the length of the trench, (d) positioned between each pair of gate-forming trenches, a doped heavy body positioned adjacent each source junction, the deepest portion of each said heavy body extending less deeply into said semiconductor substrate than said predetermined depth of said trenches, (e) a doped well surrounding each heavy body beneath the heavy body; and (f) p+ and n+ contacts disposed at the surface of the semiconductor substrate and arranged in alternation along the length of the contact area.
Preferred embodiments include one or more of the following features. The first and second dopants both comprise boron. The first energy is from about 150 to 200 keV. The first dosage is from about 1E15 to 5E15 cm
−2
. The second energy is from about 20 to 40 keV. The second dosage is from about 1E14 to 1E15 cm
−2
.
In yet another aspect, the invention features a semiconductor die that includes (a) a plurality of DMOS transistor cells arranged in an array on a semiconductor substrate, each DMOS transistor cell including a gate-forming trench, each of said gate-forming trenches having a predetermined depth, the depth of all of the gate-forming trenches being substantially the same; and (b) surrounding the periphery of the array, a field termination structure that extends into the semiconductor substrate to a depth that is deeper than said predetermined depth of said gate-forming trenches.
Preferred embodiments include one or more of the following features. The first dopant comprises arsenic and the second dopant comprises phosphorus. The first energy is from about 80 to 120 keV. The first dosage is from about 5E15 to 1E16 cm
−2
. The second energy is from about 40 to 70 keV. The second dosage is from about 1E15 to 5E15 cm
−2
. The resulting depth of the source is from about 0.4 to 0.8 &mgr;m the finished DMOS transistor.
The invention also features a method of making a heavy body structure for a trenched DMOS transistor including (a) p
Bencuya Izak
Chau Duc
Mo Brian Sze-Ki
Probst Dean Edward
Sapp Steven
Fairchild Semiconductor Corporation
Niebling John F.
Roman Angel
Sani Babak S.
Townsend and Townsend / and Crew LLP
LandOfFree
Method of manufacturing a trench transistor having a heavy... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of manufacturing a trench transistor having a heavy..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing a trench transistor having a heavy... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3287697