Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having junction gate
Patent
1995-03-31
1997-04-22
Wilczewski, Mary
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having junction gate
438283, 438291, 438195, H01L 21265
Patent
active
056228805
ABSTRACT:
Low threshold voltage MOS devices having buried electrodes are disclosed herein. Such devices have source and drain regions which include tip regions and plug regions. The buried electrodes have bottom boundaries located above the bottoms of the plug regions. The buried electrode has the same conductivity type as the device's bulk (albeit at a higher dopant concentration) and, of course, the opposite conductivity type as the device's source and drain. The exact dopant concentrations and locations of the buried electrodes should be provided such that punch through is avoided in MOS devices.
REFERENCES:
patent: 4315781 (1982-02-01), Henderson
patent: 4984045 (1991-01-01), Matsunaga
patent: 5019520 (1991-05-01), Komori et al.
patent: 5075242 (1991-12-01), Nakahara
patent: 5166765 (1992-11-01), Lee et al.
patent: 5208171 (1993-05-01), Ohmi
patent: 5338697 (1994-08-01), Aoki et al.
Skotnicki, Tomasz, Merckel, Gerard, and Pedron, Thierry, "Anomalous Punchthrough in ULSI Buried-Channel Mosfet's", pp. 2548-2556, vol. 36, IEEE Translations on Electronic Devices, Nov. 1989.
Konaka, Masami, Iwai, Hiroshi, and Nishi, Yoshio, "Suppression of Anomalous Drain Current in Short Channel Mosfet", Japanese Journal of Applied Physics, Supplement 18-1, vol. 18, Tokyo Japan, 1979.
Nagai, Ryo, Umeda, Kazunori, Takeda, Eiji, "Low-Voltage High-Gain 0.2 .mu.m N-Channel Metal Oxide Semiconductor Field Effect Transistors Channel Counter Doping with Arsenic", pp. 434-437, Japanese Journal of Applied Physics, vol. 32, No. 1B, Tokyo, Japan, Jan. 1993.
Patent Abstracts of Japan, vol. 012, No. 204, (E-620), Jun. 11, 1988, and JP-A-63 003448, (NEC Corp.) Jan. 8, 1988.
Patent Abstracts of Japan, vol. 011, No. 309, (E-547) Oct. 8, 1987, and JP-A-62 101068 (Hitachi Ltd) May 11, 1987.
Patent Abstracts of Japan, vol. 008, No. 025, (E-225), Feb. 2, 1984, and JP-A-58 188160 (Sanyo Denki KK) Nov. 2, 1983.
Yan, R. H.; Lee, K. F.; Jeon, D. Y.; Kim, Y. O.; Park, B. G.; Pinto, M. R.; Rafferty, C. S.; Tennant, D. M.; Westerwick, E. H.; Chin, G. M.; Morris, M.D.; Early, K.; Mulgrew, P.; Mansfield, W. M.; Watts, R. K.; Voshchenkov, A. M.; Bokor, J.; Swartz, R. G.; and Ourmazd, A.; "High Performance 0.1-.mu.m Room Temperature Si MOSFETs", Symposium on VLSI Technology Digest of Technical Papers, pp. 86-87, 1992.
Aoki, M.; Ishii, T.; Yoshimura, T.; Iiiyima, S., Yamanaka, T.; Kure, T.; Ohyu, K.; Shimohigashi, K.; "0.1 .mu.m CMOS Devices Using Low-Impurity Channel Transistors (LICT)", pp. 9.8.1-9.8.3, IEDM, 1987.
Yoshimura, Hisao; Matsuoka, Fumitomo; and Masakaru, Kakumu "New CMOS Shallow Junction Well FET Structure (CMOS-SJET) for Low Power-Supply Voltage", Semiconductor Device Engineering Laboratory, Japan, Proceedings of IEDM (1992), pp. 909-912.
Burr, James B, and Peterson, Allen M.; "Energy Considerations in Multichip-Module Multiprocessors", IEEE International Conference on Computer Design, pp. 593-600, 1991.
Burr, J. and Peterson, A.; "Ultra Low Power CMOS Technology", NASA VLSI Design Symposium, pp. 4.2.1-4.2.13, 1991.
Burr, Jim; "Stanford Ultra Low Power CMOS", Symposium Record, Hot Chips. V, pp. 7.4.1-7.4.12, Stanford, CA, 1993.
"A New Lease on Life for Old-Fashioned Chips", Business Week, Science and Technology, p. 100, Dec. 20, 1993.
Burr, James B., and Scott, John, "A 200m V Self-Testing Encoder/Decoder using Stanford Ultra-Low Power CMOS", IEEE International Solid-State Circuits Conference, 1994.
Okumura, Yoshinori; Shirahata, Masayoshi; Hachisuka, Atsushi; Okudaira, Tomonori; Arima, Hideaki; and Matsukawa, Takayuki; "Source-to-Drain Nonuniformly Doped Channel (NUDC) MOSFET Structures for High Current Drivability and Threshold Voltage Controllability", pp. 2541-2552, IEEE Transaction on Electron Devices, vol. 39, No. 11, Nov. 1992.
Sai-Halasz, George A.; Wordeman, Matthew R.; Kern, D.P.; Rishton, S.; and Ganin, E. "High Transconductance and Velocity Overshoot in NMOS Devices at the 0.1 .mu.m Gate-Length Level", pp. 464-466, IEEE Electron Device Letters, vol. 9, No. 9, Sep. 1988.
Brassington Michael P.
Burr James B.
Dutton Brian K.
Sun Microsystems Inc.
Wilczewski Mary
LandOfFree
Method of making a low power, high performance junction transist does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of making a low power, high performance junction transist, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making a low power, high performance junction transist will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-341170