Method of intensifying the pulpy or gritty texture of...

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Soup – sauce – gravy or base

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S599000, C426S637000, C426S638000, C426S661000

Reexamination Certificate

active

06720019

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a method of intensifying the pulpy or gritty texture of pulpy or gritty liquid to pasty foodstuffs.
For a foodstuff, the organoleptic characteristics “pulpy” or “gritty” are a sensory characterization of the texture which is characterized by the presence of coarse structured particles. Pulpy and gritty textures are in contrast to textures that may be called creamy or smooth. By texture, a group of physical and sensory properties associated with the structure of the product is understood. Texture may be sensed by the tactile sense, commonly in the mouth, and in some instances may even be measured objectively as a function of mass, distance and time. Among the physical properties of importance for the present method are rheological characteristics, such as viscosity, elasticity and yield point.
Reference is had, in this context, to Römpp's Chemie Lexikon, 9th Edition, which defines “Pulpe” (“pulp”), a mashy mass which still contains coarser particles.
According to ISO Standard 11036, “Sensory analysis—Methodology—Texture profile”, pulpiness and grittiness are geometrical attributes and are characterized under the collective term “granularity” as those geometrical texture properties which are defined in relation to the sensation of size and shape of particles and which are defined as gritty and pulpy, respectively. According to this standard, by texture all mechanical, geometrical and surface properties of a product are to be understood which are perceived by mechanical, tactile and, possibly, visual and auditory receptors. For the sensory texture analysis, generally recognized methods of foodstuff analysis have become common and laid down in extensive publications (e.g. Fliedner & Wilhelmi: “Grundlagen und Pröfverfahren der Nahrungsmittelsensorik”, 1989, Behr's Verlag, Hamburg; Amerine et al.: “Principles of Sensory Evaluation of Food”, 1965, Academic Press, New York; Moskowitz, “Food Texture”, 1987, Marcel Deker, Inc., New York). In addition to these publications and the afore-mentioned ISO Standard 11036, also ISO Standard 11035 “Sensory analysis—Identification and selection of descriptors for establishing a sensory profile by a multidimensional approach” ought to be mentioned, according to which the performance of sensory panel tests and the properties and the choice of the panelists or examiners, respectively, necessary therefor are comprehensively determined.
According to the general principles of sensorics, depending on the aim set, two types of examiner groups for texture evaluation are under consideration. If the consumers' reaction to the texture of the product is to be examined, large groups of consumers are resorted to. If, however, a more sophisticated texture characterization for establishing the texture-forming parameters is sought, an analytically oriented evaluation of the texture is carried out by a small, especially trained group of examiners.
Instrumental texture analysis comprises determining those Theological properties which are related to the sensed texture. The instrumental methods for determining the texture properties of complex food systems may be divided into the following groups:
quantitative methods for determining rheologically exactly defined parameters,
qualitative methods using devices which subject the foodstuffs to a mechanical action (shearing, deformation)
Although the measured values do not allow for a direct derivation of rheologically exactly defined parameters, experience has shown that the Theological properties are well reflected and that they correlate well with sensed texture characteristics.
Besides proteins, lipids and diverse saccharides, starch is one of the most important texturogens of a foodstuff. Among the most frequent texture-forming tasks of a starch in complex food systems are: the binding of a required amount of water and its controlled release and/or its retention, the modification of the Theological properties by forming a three-dimensional network in harmony and often in synergy with other texture formers present as well as its stabilization, which may lead to a structure that may vary from a soft to a solid, gel-type structure. The texture may often decisively contribute to enhancing the taste of a foodstuff.
The use of diverse starches and their derivatives in the commercial and industrial production of foodstuffs has long been common production practice. By using native and/or modified starch, the sensory and physical properties of the food products are decisively influenced, whereby the desired enjoyment level of the products can be adjusted. As a rule, the common starches and starch derivatives promote the formation of creamy or smooth textures.
The raw material starch is recovered from plant products, such as cereal and potatoes, and in subtropical regions also other plant products are industrially utilized for the recovery of starch. From the chemical point of view, starch is a mixture of two structurally different polyglucans, i.e. amylose and amylopectin, both of which consist of several thousand linked glucose molecules. Amylose is characterized by a nearly unbranched linear structure of linked glucose units. In amylopectin, numerous shorter molecules of an amylose-like structure are bound into a larger, branched structure.
The common, natural starches contain from 15% to 30% of amylose, depending on the type of plant from which they have been recovered. Special plant genotypes obtained by crossbreeding or by targeted genetic manipulation may also contain other portions of the two starch molecules. So-called high amylose starches having an amylose content of up to 70% are known. Moreover, also so-called amylopectin starches are known which contain up to 98% of amylopectin. Such an amylopectin starch is waxy maize starch recovered from a maize genotype in which the produced starch is nearly free of amylose. The term “waxy” comes from the fact that the maize grain has a waxy appearance.
In countries in which maize is the prevailing source of starch, it is known to use waxy maize starch instead of normal maize starch for starch-containing foodstuffs of high quality. The organoleptic sensation caused thereby is termed less sticky, less gummy and thus more pleasant.
Examples of methods and possibilities of changing the physical and organoleptic properties of foodstuffs mentioned in the literature are the following:
International PCT publication WO 93/22938, Unilever: This publication describes starch-thickened foodstuffs with an enhanced freezing-thawing stability and “good” texture, a good texture here meaning “smooth”. The starch component is a mixture of native starch and sheared amylopectin starch, i.e. an amylopectin starch which is mechanically degraded and thus cannot cause any pulpiness.
Swedish publication SE 9502 629 Sveriges Staerkelse-producenter: According to this publication, amylopectin potato starch is used as a substitute for gum arabic in the production of confectionery. The aim is to produce stable, clear solutions, and therefore the method steps of a starch degradation, hydrolysis and dextrination have to be effected. This clearly points to the fact that also here the molecular structure must be largely degraded, and thus a pulpy and gritty texture is no longer possible.
International PCT publication WO 97/03573 Sveriges Staerkelseproducenter: When filling liquid foodstuffs or liquid foodstuffs that contain pieces into cans, there is a risk of the liquid spilling over from the still open cans during manipulation and transportation thereof, unless it has a sufficient viscosity. To increase the viscosity, the most varying starch products have already been added previously. Yet, in most instances, after temperature sterilization, excessive viscosities, or an undesired turbidity of the foodstuff, respectively, have been found in the finished foodstuff. On the other hand, an amylopectin potato starch from potatoes genetically inhibited with respect to the amylose formation has proven particularly sui

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of intensifying the pulpy or gritty texture of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of intensifying the pulpy or gritty texture of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of intensifying the pulpy or gritty texture of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197348

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.